
1

Fault Tolerant FPGA Reconfigurable Fault Tolerant FPGA Reconfigurable
Hardware ArchitectureHardware Architecture

Robert Shuler* – NASA/JSC

for MAPLD, September 2008

* Some earlier analysis was presented in a NSREC 2008 poster: “Comparison of Dual-Rail and TMR Logic
Cost Effectiveness and Suitability for FPGAs . . .” with co-authors B. Bhuva, J. Gambles, S. Rezgui and P. O’Neill

2

Wanted to do three thingsWanted to do three things……

• Apply several years of work in SEU/SET mitigation
techniques

• Satisfy a sponsor’s interest in improving FPGAs for
use in deep space projects

• Encourage researchers to investigate FPGA specific
circuit topologies, e.g. LUTs, muxes and routing

Idea: Develop an FPGA
architecture for R&D purposes

Idea: Develop an FPGA
architecture for R&D purposes

3

What architectures are out there?What architectures are out there?

• Many vendor designs
– Hardware Triple Modular Redundancy (TMR) at flip flop level

for fully hardened parts, often anti-fuse based

– Single string designs with user-programmed redundancy,
usually TMR

• Small amount that’s not vendor specific
– Dual rail logic blocks (no routing) tested in ’05 by Bonacini,

et. al. (CERN)

4

WhatWhat’’s out there? (conts out there? (cont’’d)d)

• Lots of interest in re-configurable FPGA
– Scrubbing, e.g. internal vs. external, “one chip” TMR viability

– Domain crossing errors (Quinn et. al. 2007)

– Voting frequency (Pratt, Wirthlin, Quinn, et. al.)

– TMR correctness (apparently there are many surprises)

– TMR efficiency (Wirthlin et. al. 2003, table below)
sensitive configuration bitssensitive configuration bits

5

Which approach to take?Which approach to take?

Redundant FPGA

easy to use but
reduced capacity

All logic triplicated
or duplicated

Single string FPGA

tricky to use but high capacity
for single string logic

critical
logic

non-critical
logic

firmware
redundancy

Capacity is a big driver for signal processing, robotics, many apps

Architecture
trade off

6

Are we stuck with that choice?Are we stuck with that choice?

What if the TMR resources could be “split” in 3,
each with its own programming resources?
What if the TMR resources could be “split” in 3,
each with its own programming resources?

vote
A
B
C

OUT

MODE

VOTE / SPLIT

MODE A B C | OUTPUT
0 a b c | a
1 a b c | majority (a,b,c)

One simplified FPGA logic block and one
routing switch shown with triple redundancy
One simplified FPGA logic block and one

routing switch shown with triple redundancy

7

What does it look like when split?What does it look like when split?

Three independently programmable domains are created

Need upper level routing hierarchy to communicate between
domains (ordinarily present for larger capacity, not additional)

8

How much single string capacity can How much single string capacity can
be retained? (efficiency)be retained? (efficiency)

• “single string” – an ordinary FPGA with no SEU/SET mitigation

• “TMR everything” – everything is triplicated and outputs are voted
– User registers are always clocked so errors are corrected (synchronous design)

– Configuration memory still needs mitigation (e.g. scrubbing)

• “TMR + trusted cfg.” – configuration is not voted … at the time of this
table it was thought it had to be flash or hardened SRAM

type of SEU
mitigation

redun-
dancy

logic
ratio

logic
eff.

config
ratio

config
eff.

config
portion

total
efficiency

single string 1 1 100% 1 100% 75% 100%
TMR everything 3 3.8 79% 2.55 39% 75% 49%
TMR + trusted cfg. 3 3.8 79% 1 100% 75% 95%

*

* This table is a subset of data presented in a NSREC 2008 paper: “Comparison of Dual-Rail and TMR Logic Cost . . .” with
Bhuva, Gambles & Rezgui. The configuration memory portion of ~75% is from Morgan, et. al. IEEE TNS Dec 2007.

9

A surprising discoveryA surprising discovery……

• No single configuration bit can affect more than one voting domain,
so configuration bit errors are voted out by logic/register voting

• Cross domain routing requires 2 errors (2 switches) to affect
multiple domains

carry logic not shown

F/FLUT vote

F/FLUT vote

F/FLUT vote

cf
g

cf
g

switch

switch

switchfro
m

 ro
ut

in
g

LUT function configuration routing configuration

to
 a

dd
iti

on
al

 ro
ut

in
g

MODE
0=split

switch

switch

switch

cf
g

cf
g

cf
gcf

g

cf
g

cf
g

cf
g

TMR Splittable Architecture with un-voted configuration memoryTMR Splittable Architecture with un-voted configuration memory

?

?

10

So . . .So . . .

• 95% efficiency is available for all types of FPGAs
– Even those with ordinary SRAM configuration

• The cost is so small, there is little reason not to
include hardware TMR
– It’s probably much faster

– If truly transparent to user, it’s much easier to use

– Same part could be sold to a wide range of customers

• Let’s look at the claims of speed and transparency

11

Voting scheme determines bothVoting scheme determines both
speed and transparencyspeed and transparency

• Normal voter used in recent tests demonstrated <<10-11 errors/bit day

• Adds only 2 gate delays (vs. at least 1 routing and LUT delay for firmware)

• LUT and routing delay are usually an order of magnitude greater than gate
delays! Saves at least one programmed “logic level”

• Transparency will be shown in a demonstration application that follows . . .

Normal majority voterNormal majority voter Splittable voterSplittable voter

12

Demonstration ApplicationDemonstration Application

• FPGA with 6 CLB’s when single string, 2 when TMR

• Demo applications:
– 6 bit counter for single string

– 2 bit counter for TMR

• I/O routing not shown

• Redundant clock and mode lines not shown

• Goal is to illustrate routing, verify fault isolation, and
demonstrate “transparency” of the redundancy

13

Building blocksBuilding blocks……

Configurable Logic Block - CLBConfigurable Logic Block - CLB

CLBCLB

outputLUTs carry logic flip flopinputs

carry in

carry out

configuration bitsload check

(configuration pathways
will not be shown on upper
level diagrams)

14

Building blocksBuilding blocks……

Redundant Routing Block - RRBRedundant Routing Block - RRB

RRBRRB

switch

switch

switch

switch

switch

switch
. . .

switch

switch

switch

switch

switch

switch

configuration bits

15

UnUn--programmed 6 CLB FPGAprogrammed 6 CLB FPGA

RRBRRB

RRBRRB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

RRBRRB

RRBRRB

vote

vote

vote

vote

vote

vote

RRBRRB

RRBRRB
RRBRRB

16

2 bit TMR counter place & route2 bit TMR counter place & route

RRBRRB

RRBRRB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

RRBRRB

RRBRRB

vote

vote

vote

vote

vote

vote

RRBRRB

RRBRRB
RRBRRB

cnt0

cnt0

cnt0

cnt1

cnt1

cnt1

a+1

a+1

a+1

a+c

a+c

a+c

-- VHDL

signal a:std_logic_vector
(1 downto 0);

begin
process (clk) begin

if rising_edge(clk) then
a <= a + 1;

end if;
end process;

-- VHDL

signal a:std_logic_vector
(1 downto 0);

begin
process (clk) begin

if rising_edge(clk) then
a <= a + 1;

end if;
end process;

Cross-domain routing section is only used to talk to single string domains.
An error here can propagate to TMR section only if TMR is listening.

Cross-domain routing section is only used to talk to single string domains.
An error here can propagate to TMR section only if TMR is listening.

programmed function is identical to
original specification, i.e. “transparency”

programmed function is identical to
original specification, i.e. “transparency”

17

6 bit single string counter place & route6 bit single string counter place & route

RRBRRB

RRBRRB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

RRBRRB

RRBRRB

vote

vote

vote

vote

vote

vote

RRBRRB

RRBRRB
RRBRRB

cnt0

cnt2

cnt4

cnt1

cnt3

cnt5

a+1

a+b

a+b

a+c

a+c

a+c

-- VHDL

signal a:std_logic_vector
(5 downto 0);

begin
process (clk) begin

if rising_edge(clk) then
a <= a + 1;

end if;
end process;

-- VHDL

signal a:std_logic_vector
(5 downto 0);

begin
process (clk) begin

if rising_edge(clk) then
a <= a + 1;

end if;
end process;

18

2 bit user defined TMR2 bit user defined TMR

RRBRRB

RRBRRB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

CLBCLB

RRBRRB

RRBRRB

vote

vote

vote

vote

vote

vote

RRBRRB

RRBRRB
RRBRRB

-- user defined TMR
signal ax:std_logic_vector (1 downto 0);
signal ay:std_logic_vector (1 downto 0);
signal az:std_logic_vector (1 downto 0);

function majority (x,y,x:std_logic) is begin
return (x and y) or (y and z) or (x and z);

end;

begin

process (clkx) begin
if rising_edge(clkx) then

ax <= majority(ax,ay,az) + 1;
end if;

end process;

begin process (clky) begin
if rising_edge(clky) then

ay <= majority(ax,ay,az) + 1;
end if;

end process;

begin process (clkz) begin
if rising_edge(clkz) then

az <= majority(ax,ay,az) + 1;
end if;

end process;

--NOTE: Systhesis optimization must be
-- suppressed to actually get redundancy!

-- user defined TMR
signal ax:std_logic_vector (1 downto 0);
signal ay:std_logic_vector (1 downto 0);
signal az:std_logic_vector (1 downto 0);

function majority (x,y,x:std_logic) is begin
return (x and y) or (y and z) or (x and z);

end;

begin

process (clkx) begin
if rising_edge(clkx) then

ax <= majority(ax,ay,az) + 1;
end if;

end process;

begin process (clky) begin
if rising_edge(clky) then

ay <= majority(ax,ay,az) + 1;
end if;

end process;

begin process (clkz) begin
if rising_edge(clkz) then

az <= majority(ax,ay,az) + 1;
end if;

end process;

--NOTE: Systhesis optimization must be
-- suppressed to actually get redundancy!

-- “transparent” version

signal a:std_logic_vector
(1 downto 0);

begin
process (clk) begin

if rising_edge(clk) then
a <= a + 1;

end if;
end process;

-- “transparent” version

signal a:std_logic_vector
(1 downto 0);

begin
process (clk) begin

if rising_edge(clk) then
a <= a + 1;

end if;
end process;

19

What can we take away?What can we take away?

• Reconfigurable hardware fault tolerance in FPGAs is…
– Low cost (5% of single string capacity, exactly 3x overhead for TMR)
– Fast (saves at least one “logic level”)
– Easy to use (transparent)
– Has a routing hierarchy that lowers domain crossings

• Researchers may want to study more FPGA circuits…
– Current SET research emphasizes compute units and inverter strings, but

FPGA circuits (esp. routing) may behave differently
– SET capture is a large component of error rates in designs that use

hardened flip flops (e.g. DICE cell, SERT, 4TAG, etc.)

• Vendors may want to…
– Make user friendly parts that serve more applications
– Use RHBD with hardware TMR for a premium grade space part
– Look into implementing no-domain crossing routing using place and route

tools with existing parts

	Fault Tolerant FPGA Reconfigurable Hardware Architecture
	Wanted to do three things…
	What architectures are out there?
	What’s out there? (cont’d)
	Which approach to take?
	Are we stuck with that choice?
	What does it look like when split?
	How much single string capacity can be retained? (efficiency)
	A surprising discovery…
	So . . .
	Voting scheme determines both�speed and transparency
	Demonstration Application
	Building blocks…
	Building blocks…
	Un-programmed 6 CLB FPGA
	2 bit TMR counter place & route
	6 bit single string counter place & route
	2 bit user defined TMR
	What can we take away?

