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Project Objectives:

• To study the effect of electroplating parameters 
on the propensity of tin whisker growth

• To determine if graded stress coatings help 
mitigate whisker formation in pure tin 
electrodeposits

• To compare Faraday’s electrically mediated 
electrodeposition process with a commercially-
available matte tin electrodeposition process
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What Causes Tin Whiskers?

* Courtesy of Jay Brusse, NASA GSFC
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Faraday Technology Inc.,

• Faraday Technology Inc., utilizes an electrically mediated 
deposition process for pure tin.

• This process relies on non-steady state electric fields to 
control physical properties of the deposited tin, such as grain 
size, grain structure, surface finish and stress type/magnitude.

• The process is currently still under development.  The initial 
work was completed in a Ph. I SBIR contract sponsored by 
the National Science Foundation.

• In the current work, Faraday submitted coupons of graded 
stress type/magnitude along with a pure tensile stress deposits 
to evaluate whisker propensity.
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Key Factors for Uniform Plating

Primary Current Distribution:
Agitation, Anode-Cathode Design and Spacing

→Panel Uniformity

→Must be Optimized Before Implementing 
Process

Secondary                           
and Tertiary Current 

Distribution:
Chemistry/Waveform 

Parameters, Temperature

→ Throwing Power, Feature 
Size/Shape
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Cathodic Modulation – Metallization

Ø Tin reduction

Ø Potential hydrogen evolution →
surface defects, compressive tin 
deposit

Anodic Modulation – Leveling

Ø Tin oxidation

Ø Replenishment of tin ions in 
direct vicinity of cathode for 
subsequent cathodic pulses.

Off-time – No current

Ø Replenishment of tin ions in direct vicinity of cathode for subsequent 
cathodic modulations.

Pulse/Pulse-Reverse Processes
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Benefits of Pulse/Pulse Reverse Plating

By properly tailoring waveform parameters for a specific process, 
the following benefits may be realized (in comparison to DC 
plating):

1. Enhancement of mass transport

2. Control of current distribution

3. Control of nucleation and therefore crystal structure/grain size 
of the deposit, which dictates deposit properties

4. Control of alloy composition

5. Elimination of hydrogen effects (i.e. hydrogen embrittlement 
may be eliminated).
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Crystallization in Pulse/Pulse-
Reverse Processes

Crystallization is dependent on:
• Surface Diffusion Rates
• Adatom/Adion Population at Cathode Surface
• Overpotential

Conditions for Crystal Growth vs. Conditions for Nucleation
1. High surface diffusion rates

2. Low population of adatoms

3. Low overpotentials

1. Low surface diffusion rates

2. High population of adatoms

3. High overpotentials

DC PC/PRC
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Faradayic® Tin Plating Process

• Tin whiskers may be mitigated or completely eliminated by 
controlling the physical properties of the electrodeposit.

• Pure tin electroplating utilizing pulse/pulse-reverse process 
allows for the control of:

• Stress Type (tensile vs. compressive)/Magnitude

• Desired Grain Size (1-8 µm)

• Desired Grain Structure 

• Surface Finish (matte vs. bright)

• Surface Defects (pores, etc.)
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Phase I Feasibility Results
Effect of Waveform Parameters on Topography - SEM

PRC:  Low TensilePRC:  Low Compressive

DC: High Compressive PC: High Tensile

PRC:  Low TensilePRC:  Low Compressive

DC: High Compressive PC: High Tensile
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JEDEC Test Conditions [1]

3000 hours1000 hours60oC / 85% RHHigh temperature/ 
humidity storage

1000 
cycles500 cycles

-55oC to 85oC
~3 cycles / hour     

(5 –10 min dwell) 
Temperature Cycling

3000 hours

Minimum 
Duration

1000 hours

Inspection 
Intervals

30oC / 60% RHAmbient temperature/ 
humidity storage

Test ConditionsStress Type

3000 hours1000 hours60oC / 85% RHHigh temperature/ 
humidity storage

1000 
cycles500 cycles

-55oC to 85oC
~3 cycles / hour     

(5 –10 min dwell) 
Temperature Cycling

3000 hours

Minimum 
Duration

1000 hours

Inspection 
Intervals

30oC / 60% RHAmbient temperature/ 
humidity storage

Test ConditionsStress Type

• Minimum of 3 coupons per test condition.
• Minimum total number of inspection areas = 3 on each coupon.
• Minimum area on each coupon = 25 mm2

• Minimum total inspection area of at least 75 mm2 on 3 coupons per test condition
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• Brass coupons are used in this study for 
accelerated whisker growth.

• Coupon dimensions are 25.4 x 12.7 x 
1.6 mm with semicircular tin plated area 
of 200 mm2.

• A simple 
RDE system 
was utilized 
for plating in 
a simple 
MSA based 
electrolyte.

Test Samples
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• Faraday submitted coupons for six distinct types of coating, four of 
which had graded stress, achievable by sequenced waveform deposition.

Faraday’s Strategy

Coating A

Coating B

BRASS

High Tensile 
Stress

BRASSBRASS

High Tensile 
Stress

BRASS

Low Tensile 
Stress

BRASSBRASS

Low Tensile 
Stress

BRASS

Low Tensile Stress

High Tensile Stress

BRASSBRASS

Low Tensile StressLow Tensile Stress

High Tensile StressHigh Tensile Stress

Coating C

Low Tensile Stress
High Tensile Stress

Low Compressive Stress

BRASS

Low Tensile StressLow Tensile Stress
High Tensile StressHigh Tensile Stress

Low Compressive StressLow Compressive Stress

BRASS

Coating D

BRASS BRASS

BRASS BRASS

Low Tensile Stress
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High Compressive Stress

BRASS
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High Compressive StressHigh Compressive Stress

BRASS
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High Tensile Stress
Low Compressive Stress
High Compressive Stress

Low Tensile StressLow Tensile Stress
High Tensile StressHigh Tensile Stress
Low Compressive StressLow Compressive Stress
High Compressive StressHigh Compressive Stress

BRASS

BRASS

Coating A

Coating B

BRASS

High Tensile 
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BRASSBRASS

High Tensile 
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BRASS
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BRASSBRASS
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Coating F
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Test Matrix

361818Total

3335Process F

6335Process E

6335Process D

6335Process C

6335Process B

6335Process A

Matte Tin 
over Brass

TotalTemp Cycling 
(-55 to 85 C)

60oC / 
85% RH

Number of Coupons for Test 
ConditionsPlating 

Thickness 
(µm )

Plating ProcessFinish and 
Substrate

361818Total

3335Process F

6335Process E

6335Process D

6335Process C

6335Process B

6335Process A

Matte Tin 
over Brass

TotalTemp Cycling 
(-55 to 85 C)

60oC / 
85% RH

Number of Coupons for Test 
ConditionsPlating 

Thickness 
(µm )

Plating ProcessFinish and 
Substrate
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Pre-Plating Observations
• Substrate Surface:

• Surface of coupons had scratches and gouges visible to 
the unaided eye

• Substrate Pretreatment:

• No standard procedure for precleaning/pretreatment of 
samples.  

• Faraday manually polished samples (improve adhesion, 
buff out substrate defects) followed by chemical cleaning.

→ Plating process is not the only variable between Faraday’s 
process and the commercially available tin plating process.  What are 
effects of substrate defects and pretreatment on whisker propensity?
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Pre-Test Observations

• Pores:  Many of the coupons displayed pores in the plated area 
with an average size of 20 µm with a spacing of ~ 500 µm or less; 
in some cases the brass substrate was exposed.

• Uneven Plating:  Half of the test coupons were plated unevenly; 
brass substrate was exposed in some areas.

• Scratches:  Many of the coupons had scratches in the plated area; 
only a few of these scratches exposed the underlying brass.

• Other Surface Defects:  One of the processes had a lower process 
efficiency and resulted in the hydrogen side reaction at the 
cathode and resulted in surface defects from H2 bubbles on the 
surface of plated tin.  One coupon from another process resulted
in the same inefficiency. 
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• Porosity is obvious on some of the 
submitted coupons

• Transverse porosity depends on the 
following[4]:

• Substrate roughness

• Surface defects on the substrate

• Bath parameters

• Hydrodynamics

• Thickness of the deposit

• Current density

116X

Porosity 
1590X
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Example of Uneven Plating
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Example of Other Surface Defects

Scratches Voids from H2 Evolution
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Process Porosity
Uneven
Plating

Scratches
in Deposit Bubbles

A 3 2 4 0

B 4 6 1 3

C 0 1 2 0

D 2 1 2 1

E 4 3 3 0

F 1 1 3 0

Number of Samples Affect by (out of 6):

Pre-Test Observations
Summary of Coupons Displaying Surface Defects
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1000 Cycles of Temperature Cycling
• Coating A: 

– Very few whiskers 
– Average length: 10 µm
– Average density: 1 per mm2

– Max length: 14.27 µm

• Coating B: 
– Few whiskers
– Average length: ~ 14 µm
– Average whisker density: 1 per mm2

– Max length: 46.06 µm

14.27 µm

46.06 µm



University of Maryland
Copyright © 2007 CALCE EPSC

25

1000 Cycles of Temperature Cycling
• Coating C: 

– Few whiskers
– Average length: ~ 15 µm
– Average whisker density: <1 per mm2

– No whiskers found on two of the three 
samples  (Very few found on the third 
sample)  

– Max length: 24.38 µm 
24.38 µm

• Coating D: No whiskers on any of the samples
• Coating E: No whiskers on any of the samples
• Coating F: No whiskers on any of the samples

*  No whiskers observed on any of the coupons after 500 hours of
temperature cycling.
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Comparison with a Commercial 
Process:  Temperature Cycling

* A commercially available matte-tin plating was also tested.  The test results 
from the commercial samples (NC Samples) are presented here for comparison.

Sample Av STD Av STD Max

FT-A 1 10 14.27
FT-B 1 14 46.06
FT-C <1 15 24.38
FT-D 0 0 0
FT-E 0 0 0
FT-F 0 0 0

NC-14 45 35.4 5 3.9 13.34
NC-15 137 70.5 6 2.4 11.50
NC-18 16 1.3 3 2.2 7.00

Length (µm)Density (#/mm2)
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5 Months of Temp/Humidity Storage

• Observations:
– Many whiskers were found on each type of deposit.
– For Coatings C, D, E and F, only two of the three 

coupons were documented due to lack of time, 
although all three were inspected. 

– The densities and lengths from the 2 coupons 
reported are representative of those seen on the third 
coupon.
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COPPERCOPPER

Low Tensile Stress

COPPERCOPPER

Low Tensile Stress

BRASS

Coating A:  After 5 Months of 
Temp/Humidity (60/85) Storage

* Longest whisker found on an “A” Sample after 5 months storage:

Coating A2

Length: 161.12 µm
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Coating B:  After 5 Months of 
Temp/Humidity (60/85) Storage

* Longest whisker found on a “B” Sample after 5 months storage:

COPPER

High Tensile Stress

COPPERCOPPER

High Tensile Stress

BRASS

Coating B5

Length: 149.33 µm
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Coating C:  After 5 Months of 
Temp/Humidity (60/85) Storage

* Longest whisker found on a “C” Sample after 5 months storage:

COPPER

Low Tensile Stress

High Tensile Stress

COPPERCOPPER

Low Tensile StressLow Tensile Stress

High Tensile StressHigh Tensile Stress

BRASS

Coating C1

Length: 179.68 µm
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Coating D:  After 5 Months of 
Temp/Humidity (60/85) Storage

* Longest whisker found on a “D” Sample after 5 months storage:

Low Tensile Stress
High Tensile Stress

Low Compressive Stress

COPPER

Low Tensile StressLow Tensile Stress
High Tensile StressHigh Tensile Stress

Low Compressive StressLow Compressive Stress

COPPER

BRASS

Coating D3

Length: 295.26 µm
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Coating E:  After 5 Months of 
Temp/Humidity (60/85) Storage

* Longest whisker found on an “E” Sample after 5 months storage:

Low Tensile Stress
High Tensile Stress

Low Compressive Stress
High Compressive Stress

COPPER

Low Tensile StressLow Tensile Stress
High Tensile StressHigh Tensile Stress

Low Compressive StressLow Compressive Stress
High Compressive StressHigh Compressive Stress

COPPER

BRASS

Coating E2

Length: 152.78 µm
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Coating F:  After 5 Months of 
Temp/Humidity (60/85) Storage

* Longest whisker found on a “F” Sample after 5 months storage:

Low Tensile Stress
High Tensile Stress

Low Compressive Stress
High Compressive Stress

COPPER

Low Tensile StressLow Tensile Stress
High Tensile StressHigh Tensile Stress

Low Compressive StressLow Compressive Stress
High Compressive StressHigh Compressive Stress

COPPER

BRASS

Coating F1

Length: 146.43 µm
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Density:  After 5 Months of 
Temp/Humidity (60/85) Storage

Sample D1 Sample F1
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Comparison with a Commercial 
Process:  Temp/Humidity Testing

* A commercially available matte-tin plating was also tested.  The test results 
from the commercial samples (NC Samples) are presented here for comparison.

Sample Average STD Average STD Max

FT-A2 236 26.1 19.3 25.9 161.1
FT-B1 268 23.3 20.7 23.4 99.2
FT-C2 266 4.1 27.2 36.7 130.5
FT-D3 281 7.9 30.7 57.5 295.3
FT-E2 309 21.9 22.8 36.4 152.8
FT-F1 406 22.6 22.9 30.0 146.4

NC-10 19 7.2 6.7 4.9 18.8
NC-11 26 8.2 3.0 2.4 7.6

Density (#/mm2) Length (µm)
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Future Work

• Temperature Cycling
– Completed

• Temperature Humidity
– All coupons in the temperature/humidity 

chamber will be taken out from the chamber 
after 9 months for evaluation

– Further evaluation after 1 year
– Test will be stopped after 1 year
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Whisker/Hillock Assessment:                 
Samples Aged 3 Years

• Pure tin deposits plated with pulse/pulse reverse electrodeposition were aged for 3 
years and then examined for whiskers (photos under 200X magnification)

• The pure tin deposits were 10 µm thick on copper substrates plated with RDE

• The coupons with the lowest density of whiskers/smallest defect size were both 
plated utilizing high frequency and low duty cycle (PC), perhaps driving nucleation 
over crystal growth although, peak current density did not seem to have an effect
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• The deposits with highest density/largest defect size seem to have been plated with 
a high duty cycle (both PRC and PC), although no real trend is observed

Whisker/Hillock Assessment:                 
Samples Aged 3 Years

PRC PC DCPRC PC DC
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