

Tin Whiskers: Attributes and Mitigation

Presentation to: Capacitor and Resistor Technology Symposium 2002 New Orleans, LA March 26, 2002

> Jay Brusse QSS Group, Inc. @ NASA Goddard

Gary Ewell The Aerospace Corp. Jocelyn Siplon The Aerospace Corp.

Mission Success Starts With Safety

Outline

- Why ANOTHER Paper on Tin Whiskers?
- What are Tin Whiskers?
 - Examples
 - Failure Modes
 - Attributes
- Experience History
- Tin Whiskers on Ceramic Capacitors (MLCCs)
- Whisker Mitigation Strategies
- Conclusions

Why ANOTHER Paper on Tin Whiskers?

• The PAST:

- Tin Whiskers Known for ~60 Years
- HUNDREDS of Independent Studies
- Numerous Disparities Exist in Published Literature

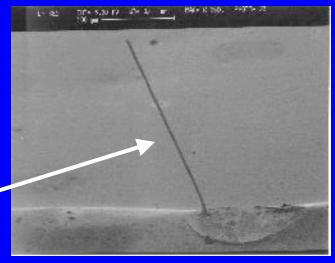

• The PRESENT: Combination of *Concerning* Factors

- Pending Pb-Free Legislation COULD Introduce More Whisker Prone Items
- Continuous Reduction in Circuit Geometries and Power Reduction
- Lack of Fundamental Understanding of Whisker Growth
- Lack of "Accelerated" Test Methods
- "New" Discoveries of Whiskers on Items thought to be "Immune"

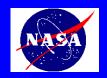
• This WORK Provides:

- One Reference to Collate Known/Unknown Attributes of Tin Whiskers

March 26, 2002

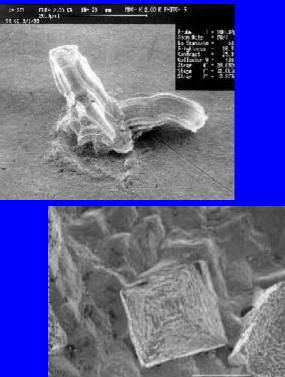


What are Tin Whiskers?


- "Hair-Like" Structures of Tin that May Grow <u>Spontaneously</u> from Items with Tin Finishes
 - Other pure metal (Zn, Cd) electroplates and alloys like Sn-Cu, Sn-Bi and even some Sn-Pb finishes may also form whiskers but not as readily as pure Sn
- Growth Process is Driven by Mechanical Stress Relief Mechanism
 - <u>COMPRESSIVE</u> Stress WITHIN Sn Layer
 - Electrical Bias, Contamination NOT Needed
 - <u>Whiskers are NOT Dendritic Growths</u>

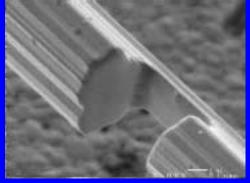
Dendrites vs. Whiskers

March 26, 2002

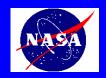


Whisker Shapes and Dimensions

- Filaments
- Straight/Kinked
- Nodules


- Solid

- Pyramids
- Striated
- Length: up to 1 cm Diameter: 0.006 μm to 10 μm


LE SEL MILLER MILLER MER MER STREET HOLDER HER MER HER STREET HER

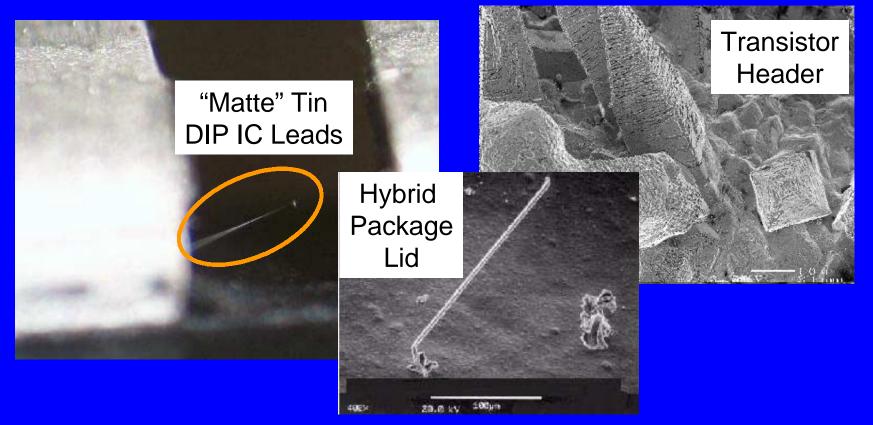
Tin Whiskers: Attributes and Mitigation

March 26, 2002

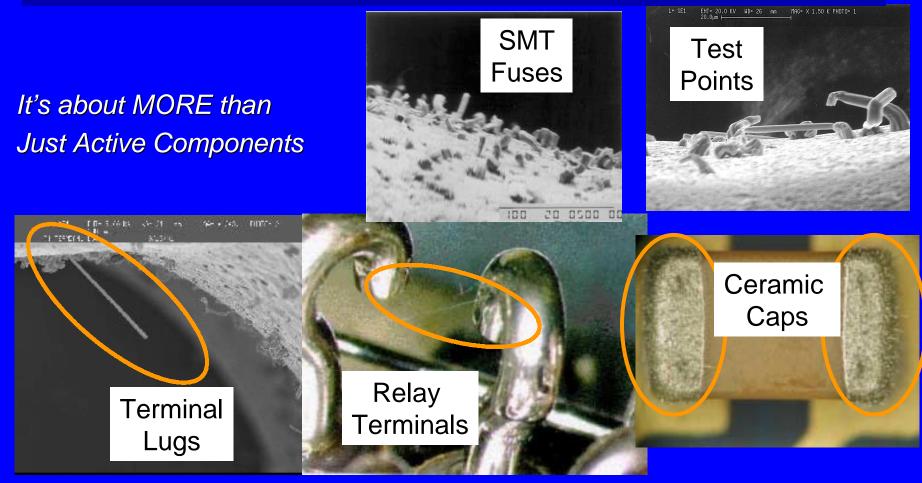
Sneaky Tin Whiskers!!!

• Growth Rate

- Up to 9 mm/yr
- Typically Substantially SLOWER!!!
- Incubation Period (Dormancy)
 - As Short as a Few Days after Plating
 - <u>AS LONG AS MANY YEARS!!!</u>


<u>These Attributes are UNPREDICTABLE thus</u> <u>Presenting a MAJOR Challenge</u>

Examples of EEE Components with Tin Whiskers


Active Components

Examples of PASSIVE EEE Components with Tin Whiskers

March 26, 2002

Tin Whisker Failure Modes

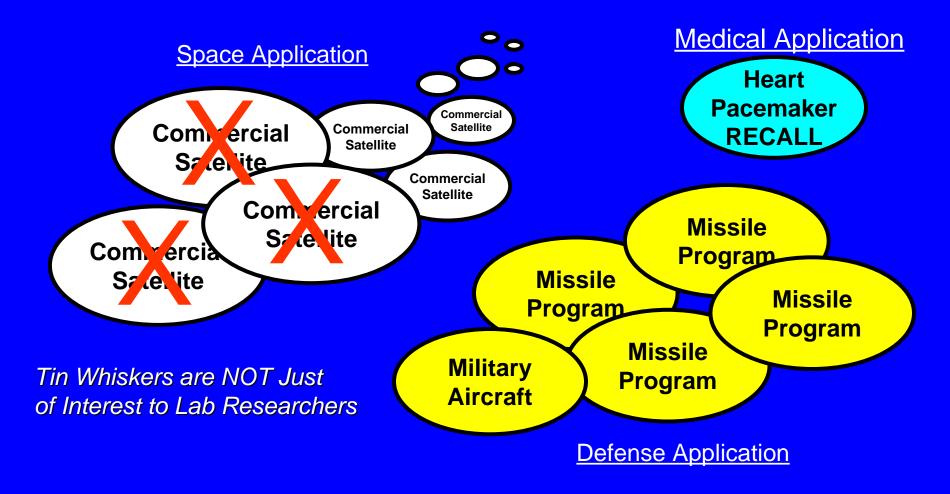
Electrical Short Circuits

- Permanent (if current < 10's of mA)
- Intermittent (if current > 10's of mA)

METAL VAPOR ARC in VACUUM

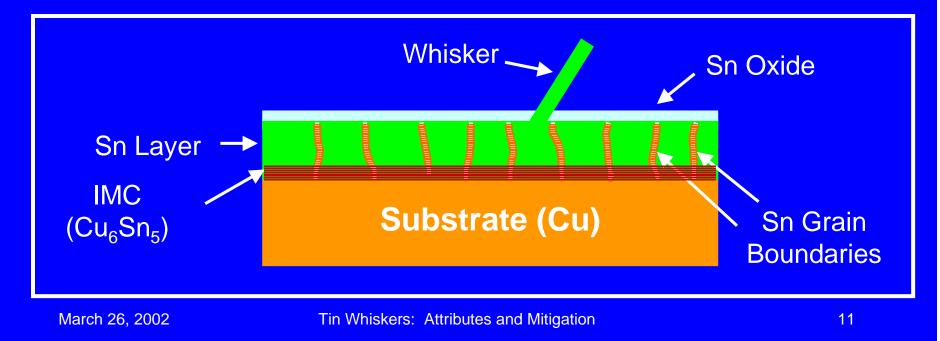
- If V > ~13 V and I > 10's of Amps, then Whisker can Vaporize into Highly Conductive Plasma of Tin Ions
- Plasma can Form Arc Capable of Carrying <u>HUNDREDS OF AMPERES</u>
- Arc is Sustained by Tin Evaporated from Surrounding Areas

Debris/Contamination


- Interfere with Sensitive Optics or MEMS
- Can Cause Shorts in Areas Remote From Whisker Origins

March 26, 2002

"Reported" Tin Whisker-Induced Field Problems



One Model for Whisker Growth Mechanism

- 1. Substrate Elements (Cu, Zn, etc.) Diffuse Into Sn and Form Intermetallic Compounds (IMCs) Along Sn Grain Boundaries
- 2. As a Result, Stress Builds in Sn Layer
- 3. To Relieve Stress, Whiskers EXTRUDE Thru Ruptures in Sn Oxide

Factors That May Contribute Compressive Stress to Tin Layer

Plating Chemistry/Process

- Electroplating Current Density
 - Higher Current Density --> Higher Residual Stress
- Tin Grain Size and Shape
 - Submicron Grains
 - "Matte" vs. "Bright" Finish
- Use of "Brighteners" and Presence of Impurities (Codeposited Carbon/Hydrogen)
- Plating Thickness
 - >0.5 μm and <8 μm more prone
- Alloy composition
 - Pure Sn, Sn-Cu, Sn-Bi, and rarely Sn-Pb
- Substrate (Including Base Metal and Barrier Plating Layers)
 - Material (Copper, Brass, Nickel, others)
 - Substrate Preparation (Stamped, Formed, Annealed)

Factors That May Contribute Compressive Stress to Tin Layer

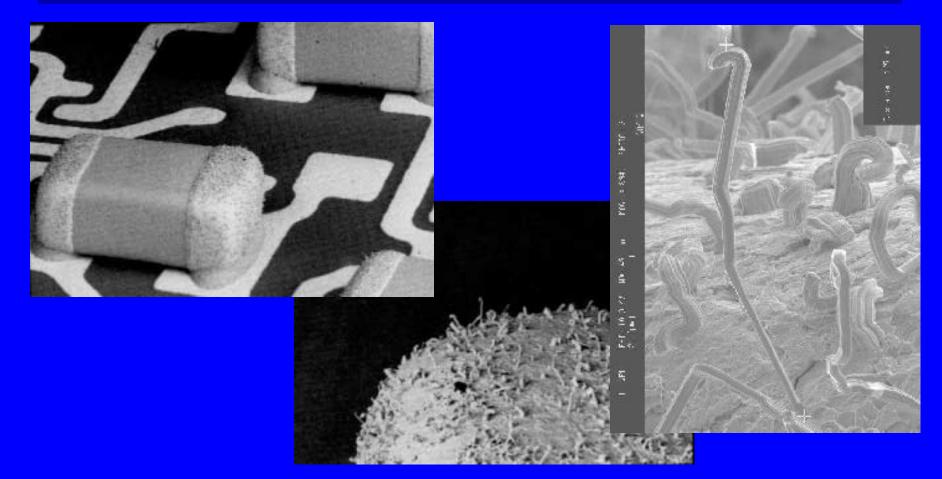
- Intermetallic Compound (IMC) Formation
 - Substrate Element Diffusion into Tin Layer
 - Metallurgical Interactions
- Environmental Stresses
 - Temperature (50°C More Favorable)
 - Temperature Shock/cycling (CTE Mismatches)
 - Humidity (High RH Observed to Increase Whiskering)
 - Applied Pressure (Torque on Fasteners)

HOWEVER....

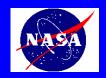
Many Experiments Show Contradictory Results For These Factors

Tin Whiskers and Multilayer Ceramic Capacitors (MLCCs) Past Research

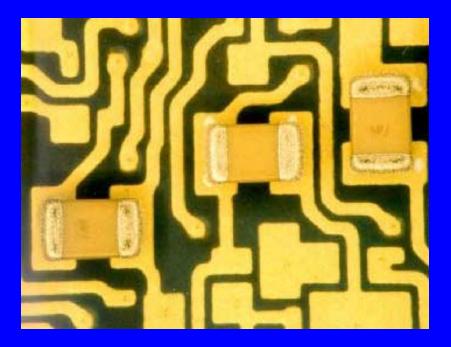
- Only a Few Dedicated Studies of Whisker Propensity of MLCCs
- Studies Assert MLCCs are <u>NOT</u> Prone to Whisker Because of:
 - "Large" (>5 μ m), Well-Polygonized Sn Grain Structure
 - "Matte" Tin Plating
 - Nickel Barrier Layer (> 2 μm) Minimizes Diffusion
 - May produce "tensile" stress @ Tin layer further reducing whisker propensity
 - Post-Plating Annealing Promotes Grain Growth & Reduces Residual Stress
- 1997 Study: <u>18 Years WHISKER-FREE</u> Observations for MLCCs Stored at 50°C



March 26, 2002



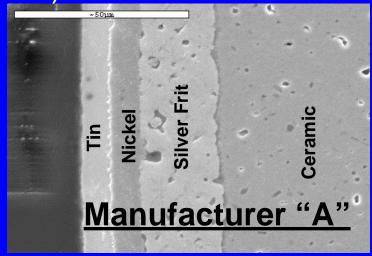
<u>RECENT</u> Discoveries of MLCCs with Tin Whiskers


March 26, 2002

What Went Wrong???

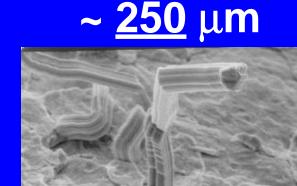
- Q: "Didn't We Order *Pd-Ag Terminated* MLCCs?"
- A: "YES! But the Supplier Shipped Us **PURE TIN** by Mistake!"
- Q: "Can We Still Epoxy Mount Them Inside Our Hybrid?

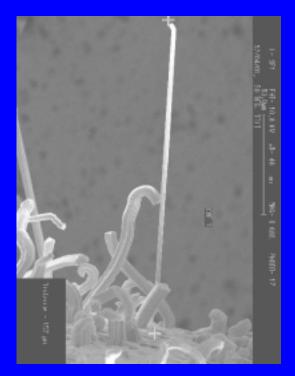
Tin Whiskers: Attributes and Mitigation


March 26, 2002

Tin Whiskers and MLCCs CASE 1: Hybrid Microcircuit Application

- User Application
 - Ordered Pd-Ag but RECEIVED Pure TIN
 - Conductive Epoxy Mount
 - Hermetic Hybrid Package (Nitrogen Backfill)
- MLCC Construction (0805 Commercial)
 - Barium Titanate Ceramic Body
 - Silver Frit Base Termination $(17 \,\mu\text{m})$
 - <u>Nickel Barrier Layer</u> (6.5 μm)
 - <u>Matte Tin</u> Plated Final Finish (6.5 μm)
 - Average Grain Size > $5 \mu m$



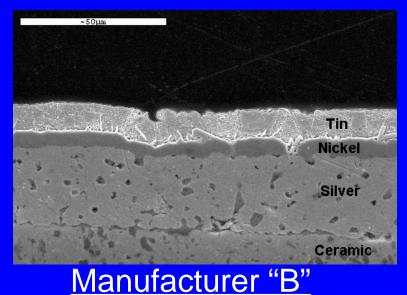

Tin Whiskers and MLCCs CASE 1: User Test Environment

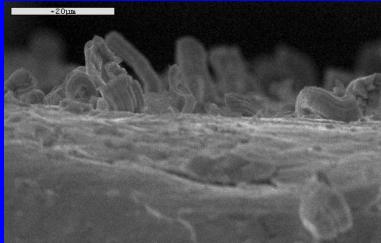
PROFUSE WHISKERS

<u>Condition 1</u>: Thermal Cycle: -40°C / +90°C (> 200 Cycles)

Max. Length

Condition 2: High Temp Storage: +90°C for 400 hrs NO WHISKERS

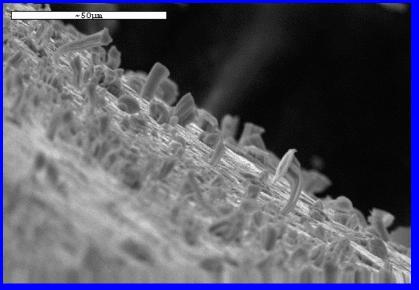

March 26, 2002



Tin Whiskers and MLCCs CASE 2: Recent Experiments @ The Aerospace Corp. PROFUSE WHISKERS

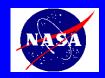
- Pure Tin Commercial MLCCs (with NICKEL Barrier)
 - Heat Treated @ 215°C for 5 seconds to "Simulate" Reflow Installation
 - Thermal Cycle Unmounted: -40°C / +90°C for 500+ cycles

Max. Length ~ 30 µm


March 26, 2002

Tin Whiskers and MLCCs CASE 3: More Experiments @ The Aerospace Corp. PROFUSE WHISKERS

- Pure Tin Military MLCCs (with NICKEL Barrier)
 - Thermal Cycle Unmounted: -40°C / +90°C for 100 cycles



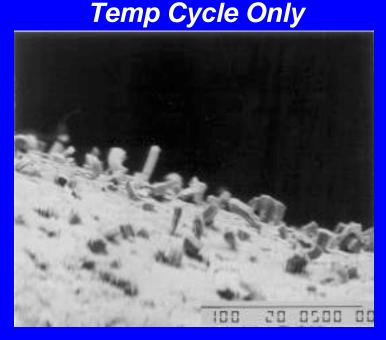
Manufacturer "C"

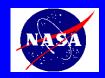
Max. Length ~ 30 µm

NOTE: MIL Specs 55681 and 123 Allow Pure Tin "OPTION" (Termination Type "W")

March 26, 2002

Tin Whiskers and MLCCs CASES 4 & 5: More MLCC Whisker "Anecdotes"


- Case 4: Incorrect MLCC Shipped
 - Manufacturer "D"
 - User orders Pd-Ag MLCCs, but gets <u>PURE TIN</u> by Mistake
 - User Observes "Moss-Like" Growths on MLCCs in Stock Storage
- Case 5: AFTER <u>Vapor Phase Installation</u>
 - Manufacturer "B"
 - Pure Tin Commercial 2220 and 1812 MLCCs
 - Vapor Phase Installation with Solder (63 / 37) @ 217°C
 - Thermal Cycle/Shock (-55°C / +100°C) for 50 to 400 Cycles
 - RESULTS: <u>Whiskers up to 30 μm</u>


Tin Whiskers and SMT Fuses Evaluation PRIOR to Converting to Pb-Free

- SMT Fuse Construction Similar to MLCC
 - Prototype Pb-free Termination: "Matte" Tin Finish Over Nickel
- Whisker Evaluation Finds:
 - <u>WHISKERS after Temp Cycle</u>
 - No Whiskers after Temp/Humidity
 - No Whiskers after High Temp Storage
- Sn/Pb Control Samples <u>Did NOT Whisker</u>

Whiskers AFTER

Whisker Mitigation

AVOID WHISKER PRONE PRODUCTS/PROCESSES

- User Strategy Should Involve Application of
 <u>AS MANY MITIGATING PRACTICES AS POSSIBLE</u>
 - LOWER COMPRESSIVE STRESS in the Tin Plating Itself
 - Annealed or Hot Dipped Surfaces (Preferably with Sn/Pb Solder)
 - Careful Handling to Minimize Scratches, Marks, Indentations
 - Physical Barriers
 - Conformal Coat
 - Insulating Barriers, Cardboard
 - Increase Spacing of Surfaces of Opposite Polarity to > 0.5 inches

<u>Avoid Pure Tin if Possible</u>

Whisker Mitigation Conformal Coat (Polyurethane)

- WILL NOT PREVENT WHISKER from Growing Through
- REDUCES Incubation Period: Whiskers appear SOONER!!
- HOWEVER, REDUCES Growth Rate
- Likely Prevents Whisker from Growing Back into Coated Surface

Whiskers Growing BENEATH 2 mil Thick Coating

Whisker Growing Thru ~0.25 mil Thick Coating

March 26, 2002

Conclusions

- Electrical Shorting Due to Tin Whiskers Remains a Significant Problem
 - Problems WILL INCREASE with Increased Use of Pb-Free Coatings
 - Failures <u>ARE STILL OCCURRING</u>
- Accelerated Test to Determine Susceptibility to Whisker Formation Needs to be Developed
 - Must Include Acceleration Factors for BOTH Incubation and Growth
- Users Should Carefully Assess Application of Passives Containing Pure Tin Coating for Susceptibility to Tin Whisker Formation
 - Susceptibility Could be Lot-Related

Contact Information

Jay Brusse QSS Group, Inc. (NASA Goddard) 301-286-2019 Jay.A.Brusse.1@gsfc.nasa.gov

Gary Ewell The Aerospace Corporation 310-336-6003 Gary.J.Ewell@aero.org Jocelyn Siplon The Aerospace Corporation 310-336-6572 Jocelyn.P.Siplon@aero.org

NASA Goddard Tin Whisker WWW Site

http://nepp.nasa.gov/whisker

March 26, 2002