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Motivation for alternative to silicon 
based power 

• Current silicon power 
solutions are at their innate 
limits for space applications 

• Silicon devices are at 
efficiency limit 
– Thermal management is an 

issue 
– Low voltage – high power 

applications (POL converters for 
processors) are also limited 

• Best hi-rel devices are less 
then ~400 V drain-to-source 
– Stacking devices have risks 
– High voltage applications (JIMO, 

Ion engines) are therefore 
limited 

– Poor efficiency also limits 
applicability 
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Comparing power switching materials 

Property  Si  GaN  3C-SiC  6H-SiC  4H-SiC  
Bandgap, Eg (eV at 

300K)  1.12 3.4 2.4 3 3.2 
Critical electric field, 

Ec (V/cm)  2.5 105  3 106  2 106  2.5 106  2.2 106  
Thermal conductivity,  

(W/cmK at 300K)  1.5 1.3 3-4 3-4 3-4 
Saturated electron 
drift velocity, vsat 

(cm/s)  1 107  2.5 107 2.5 107 2 107 2 107  

Electron Mobility, ìn 
(cm2/Vs)  1350 1000-2000 1000 500 950 

Hole Mobility, ìp 
(cm2/Vs)  480 30 40 80 120 

Dielectric constant 11.9 9.5 9.7 10 10 
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Putting these technologies practice 

• Silicon power delivery is 
a decade below GaN and 
SiC at material limits 

• Processing and 
manufacture, radiation 
effects, reliability effects 
and cost, however, weigh 
on what device will be 
used in NASA missions 

• Both GaN and SiC have 
these challenges to meet 

• But GaN and SiC players 
have well traveled path to 
meet 
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Gallium Nitride 

• Device are becoming 
available 
– Efficient Power Conversion is 

primary power supplier 
– Cree is primary RF supplier 
– Neither available in Hi-Rel or 

RAD-Hard form 
• Reliability effects are a 

concern 
– Gate stress is limited (abs max 

of Vgs +6, -5 V) 
– Thermal effects and aging are 

under study at GRC 

Dielectric

GaN
- - - - - - - - - - - - - - -

Si

AlGaN Electron Generating Layer

DGS
- - - -
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GaN FETs are HEMT only so far 

Rating (V) Device Man. Ions tested 
55 IRF5NJZ48 IR Br 

-100 2SJ1A03  Fuji Br, Xe, Kr 
-200 2SJ1A09  Fuji Br, Xe, Kr 
600 NSD1A01 Fuji Xe, Kr 
60 2N7616 Semicoa Br, Xe, Kr 
30 2N7478 Semicoa Br, Xe, Kr 

-100 2N7425 Semicoa Br, Xe, Kr 
-60 2N7626 Semicoa Br, Xe, Kr 

Rating (V) Device Man. Availability 

40-200 EPC10XX EPC Q1FY09 

40-200 EPC20XX EPC Q2FY11 

40-200 MGN29XX EPC/Microsemi Q4FY12 

84 CGH40025 Cree Q1FY10 

84 CGH40120F Cree Q2FY10 

84 CGH40180PP Cree Q2FY10 

120 EGNB010MK Sumitomo Q3FY10 

120 EGNB045MK Sumitomo Q3FY10 

50 RF3934 RFMD Q3FY10 
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TID/DDD in RF GaN 

• GaN HEMTs have been 
shown to be robust to 
DDD and TID 

• GaN MOSFETs are not 
expected to be as hard 

• SEE tests on GaN 
HEMTs have shown no 
SEE 
– As expected since 

HEMTs are similar to 
JFETs 
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Radiation Characterization of Commercial GaN Devices Richard D. Harris IEEE Radiation DWS, 2011 
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SEE in RF GaN 

• Kuboyama et al saw HI 
damage in GaN HEMTs 
devices, but had parts 
with much lower leakage 
than NASA tested.  This 
will have to be revisited. 
– Single-Event Damages 

Caused by Heavy Ions 
Observed in AlGaN/GaN 
HEMTs, Satoshi Kuboyama, 
Akifumi Maru, Hiroyuki 
Shindou, Naomi Ikeda, 
Toshio Hirao, Hiroshi Abe, 
and Takashi Tamura 
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eGaN® FET SEE testing 

• EPC/Microsemi has HEMT GaN FET that transists 
similarly to enhancement mode FET 
– Designed for PMAD applications 
– Similar specification to silicon power 
– eGaN ® is a registered trademark of Efficient Power 

Conversion Corp. 
• SEE testing start with DPA that indicate that dead-bug 

irradiation through the solder bumps would be 
adequate for testing 

• Lateral devices would need angle studies 
• Initial SEE testing was promising on the first 

generation (Gen1), so Gen2 was re-spun with a thicker 
epitaxial and the source and substrate connected to 
reduce SEE effects 
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Test Methodology 

• Used the NEPP guideline: 
The Test Guideline for 
Single Event Gate Rupture 
(SEGR) of Power 
MOSFETs [JPL 
Publication 08-10 2/08] 

• Two variances 
– No post irradiation stress 

tests between  
– Testing at angle required 

Roll 
Tilt 
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EPC 1014 
  
 SEM Micrograph, 25X Optical Photo, 50X 

Gate 

Source 

Drain Source Drain 
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EPC 1014 

SEM Micrograph, 65X , 
 52 deg. Tilt 

SEM Micrograph after FIB 
Cut, 2500X, 52 deg. Tilt 

Sn/Pb 
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EPC 1014 

SEM Micrograph after FIB 
Cut, 25,000X , 52 deg. Tilt 

SEM Micrograph after FIB 
Cut, 25,000X , 52 deg. Tilt 
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EPC 1014 

GaN 1.46µm 

1.13µm 

4.8µm Aluminum 

Aluminum 

Tin 

Lead 

Titanium 

Nickel 
Copper 

SiO2 
SiO2 

Tungsten 

Titanium 

Silicon 

Top Solder = 45-50µm Thick 

Aluminum Nitride 
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EPC 1014 
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X-Ray Element Map EPC 1014 
Nitride 

Silicon Titanium Nickel Copper 

Gallium Tin Lead Tungsten 

Oxygen Aluminum SEM Image 
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EPC1012 / EPC 2012 Comp 0o 

• In all figures, green is 
Ig, red is Vds, black is 
Id 

• The EPC1012 is a 200 
V parts suspected to 
be worst case 
– Gen1 has SEE onset at 

40 V (20%) 
– Gen 2 has SEE onset at 

80 V (40%) 
• Device rarely fails but 

drain leakage 
increases 

• SEE mechanism is 
understudy 
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EPC1012 / EPC 2012 Comp 60o Tilt 

• 60 degree tilt angle 
irradiation shown 
less sensitivity to 
small break  
– Large SEE – SEDR and 

SET – seen at higher 
voltages 

• TRIM calculation 
showed ion Bragg 
peak at or beyond the 
active region 
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EPC1012 / EPC 2012 Comp 60o Roll 

• 60 degree roll 
angle 
– Device is less 

susceptible than 
normal  

– But more 
susceptible than tilt 

• Gen2 gate leakage 
also reduced 
compared to Gen1 
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Transfer Curve Delta – EPC1012 and 
EPC2012 

• The threshold voltage and  
transconductance with 
ion damage 
– Xenon at 60o tilt shows 

effect event though no SEE 
are seen 

– All devices show this effect 
– Reportedly not seen in TID 

measurements 
• Proton testing to be done 
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EPC1014 

• 40 V EPC devices 
are the most robust 
– EPC2014 have 

similar response 
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Trends for eGaN devices  

• At normal incidence, the higher LET ion does more 
damage 
– This was expected 

• Devices with lower voltage rating were less 
susceptible to dose damage 
– This was also expected 
– 40 V nearly immune 

• Devices irradiated at 60o tilt showed little degradation 
– Devices irradiated at 60o showed catastrophic SEE with no 

dose damage precursors 
• Devices irradiated at 60o roll showed some 

degradation 
– SEDR occurred at lower voltages than tilt 

• Gen2 parts were more robust than Gen1 
– Substrate shorted to source in all 
– EPC2012 have thicker Epitaxial layer 
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Conclusion 

• Silicon is still primary power management and 
delivery component for NASA 
– But its limits are becoming NASA’s limits 

• Gallium Nitride 
– Pros:  High speed and high efficiency prospects open 

up high-power/low-voltage delivery 
– Cons:  Reliability and manufacturing questions are now 

being addressed 
– EPC eGaN FET showing increasing promise as next 

generation solution (Gen2 superior to Gen1) 
• Future work 

– Proton (SEE and DDD) and TID testing 
– Identification of the SEE mechanism with follow on 

modeling 
• Include angle, ion-energy, and bias effects 
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