# **Rad Effects in Emerging GaN FETs**

#### Leif Scheick

#### Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca

This Research Was Carried Out In Part by the Jet Propulsion Laboratory, California Institute of Technology, Under Contract With the National Aeronautics and Space Administration Under the NASA Electronic Parts and Packaging Program (Code AE). Other data was collected from NASA flight projects.

# Motivation for alternative to silicon based power

- Current silicon power solutions are at their innate limits for space applications
- Silicon devices are at efficiency limit
  - Thermal management is an issue
  - Low voltage high power applications (POL converters for processors) are also limited
- Best hi-rel devices are less then ~400 V drain-to-source
  - Stacking devices have risks
  - High voltage applications (JIMO, lon engines) are therefore limited
  - Poor efficiency also limits applicability



# Comparing power switching materials

| Property                                             | Si                | GaN                 | 3C-SiC                   | 6H-SiC              | 4H-SiC              |
|------------------------------------------------------|-------------------|---------------------|--------------------------|---------------------|---------------------|
| Bandgap, Eg (eV at<br>300K)                          | 1.12              | 3.4                 | 2.4                      | 3                   | 3.2                 |
| Critical electric field,<br>Ec (V/cm)                | <b>2</b> .5 10⁵   | 3 10 <sup>6</sup>   | <b>2</b> 10 <sup>6</sup> | 2.5 10 <sup>6</sup> | 2.2 10 <sup>6</sup> |
| Thermal conductivity,<br>(W/cmK at 300K)             | 1.5               | 1.3                 | 3-4                      | 3-4                 | 3-4                 |
| Saturated electron<br>drift velocity, vsat<br>(cm/s) | 1 10 <sup>7</sup> | 2.5 10 <sup>7</sup> | 2.5 10 <sup>7</sup>      | 2 10 <sup>7</sup>   | 2 10 <sup>7</sup>   |
| Electron Mobility, in<br>(cm2/Vs)                    | 1350              | 1000-2000           | 1000                     | 500                 | 950                 |
| Hole Mobility, ìp<br>(cm2/Vs)                        | 480               | 30                  | 40                       | 80                  | 120                 |
| Dielectric constant                                  | 11.9              | 9.5                 | 9.7                      | 10                  | 10                  |



- ice
- **Putting these technologies practice**
- Silicon power delivery is a decade below GaN and SiC at material limits
- SiC at material limits • Processing and manufacture, radiation effects, reliability effects and cost, however, weigh on what device will be used in NASA missions
- Both GaN and SiC have these challenges to meet
- But GaN and SiC players have well traveled path to





# **Gallium Nitride**

- Device are becoming available
  - Efficient Power Conversion is primary power supplier
  - Cree is primary RF supplier
  - Neither available in Hi-Rel or RAD-Hard form
- Reliability effects are a concern
  - Gate stress is limited (abs max of Vgs +6, -5 V)
  - Thermal effects and aging are under study at GRC

#### 200V Silicon Device (30 milli Ohms)







# GaN FETs are HEMT only so far

| Rating (V) | Device     | Man.          | Availability |
|------------|------------|---------------|--------------|
| 40-200     | EPC10XX    | EPC           | Q1FY09       |
| 40-200     | EPC20XX    | EPC           | Q2FY11       |
| 40-200     | MGN29XX    | EPC/Microsemi | Q4FY12       |
| 84         | CGH40025   | Cree          | Q1FY10       |
| 84         | CGH40120F  | Cree          | Q2FY10       |
| 84         | CGH40180PP | Cree          | Q2FY10       |
| 120        | EGNB010MK  | Sumitomo      | Q3FY10       |
| 120        | EGNB045MK  | Sumitomo      | Q3FY10       |
| 50         |            |               | Q3FY10       |

NASA GSFC, Greenbelt, MD.



# **TID/DDD** in RF GaN

- GaN HEMTs have been shown to be robust to DDD and TID
- GaN MOSFETs are not expected to be as hard
- SEE tests on GaN HEMTs have shown no SEE
  - As expected since HEMTs are similar to JFETs



To be presented at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic rectinicity workshop out of the 10, 2012,



# SEE in RF GaN

- Kuboyama et al saw HI damage in GaN HEMTs devices, but had parts with much lower leakage than NASA tested. This will have to be revisited.
  - Single-Event Damages
    Caused by Heavy Ions
    Observed in AIGaN/GaN
    HEMTs, Satoshi Kuboyama,
    Akifumi Maru, Hiroyuki
    Shindou, Naomi Ikeda,
    Toshio Hirao, Hiroshi Abe,
    and Takashi Tamura







# eGaN® FET SEE testing

- EPC/Microsemi has HEMT GaN FET that transists similarly to enhancement mode FET
  - Designed for PMAD applications
  - Similar specification to silicon power
- SEE testing start with DPA that indicate that dead-bug irradiation through the solder bumps would be adequate for testing
- Lateral devices would need angle studies
- Initial SEE testing was promising on the first generation (Gen1), so Gen2 was re-spun with a thicker epitaxial and the source and substrate connected to reduce SEE effects



# **Test Methodology**

NASA GSFC, Greenbe

- Used the NEPP guideline: The Test Guideline for Single Event Gate Rupture (SEGR) of Power MOSFETs [JPL Publication 08-10 2/08]
- Two variances
  - No post irradiation stress tests between
  - Testing at angle required









#### SEM Micrograph, 25X





#### SEM Micrograph, 65X, 52 deg. Tilt

#### SEM Micrograph after FIB Cut, 2500X, 52 deg. Tilt





# SEM Micrograph after FIB Cut, 25,000X , 52 deg. Tilt



# SEM Micrograph after FIB Cut, 25,000X , 52 deg. Tilt







To be presented at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology workshop June 11-13, 2012, NASA GSFC, Greenbelt, MD.







### X-Ray Element Map EPC 1014

Sample 8 10kx FastMap2



NACA COLO, OLCHIDER, MD.

# EPC1012 / EPC 2012 Comp 0°

- In all figures, green is Ig, red is Vds, black is ld
- The EPC1012 is a 200 V parts suspected to be worst case
  - Gen1 has SEE onset at 40 V (20%)
  - Gen 2 has SEE onset at 80 V (40%)
- **Device rarely fails but** drain leakage increases
- SEE mechanism is understudy



Elapsed time [AU] NASA GSFC, Greenbelt, MD.

# EPC1012 / EPC 2012 Comp 60° Tilt

- 60 degree tilt angle irradiation shown less sensitivity to small break
  - Large SEE SEDR and SET – seen at higher voltages
- TRIM calculation showed ion Bragg peak at or beyond the active region



# EPC1012 / EPC 2012 Comp 60° Roll

- 60 degree roll angle
  - Device is less susceptible than normal
  - But more susceptible than tilt
- Gen2 gate leakage also reduced compared to Gen1



### Transfer Curve Delta – EPC1012 and **EPC2012**<sup>10</sup>

- The threshold voltage and transconductance with ion damage
  - Xenon at 60° tilt shows effect event though no SEE are seen
  - All devices show this effect
  - Reportedly not seen in TID measurements
- Proton testing to be done





- 40 V EPC devices are the most robust
  - EPC2014 have similar response







# **Trends for eGaN devices**

- At normal incidence, the higher LET ion does more damage
  - This was expected
- Devices with lower voltage rating were less susceptible to dose damage
  - This was also expected
  - 40 V nearly immune
- Devices irradiated at 60° tilt showed little degradation
  - Devices irradiated at 60° showed catastrophic SEE with no dose damage precursors
- Devices irradiated at 60° roll showed some degradation
  - SEDR occurred at lower voltages than tilt
- Gen2 parts were more robust than Gen1
  - Substrate shorted to source in all
  - EPC2012 have thicker Epitaxial layer





- Silicon is still primary power management and delivery component for NASA
  - But its limits are becoming NASA's limits
- Gallium Nitride
  - Pros: High speed and high efficiency prospects open up high-power/low-voltage delivery
  - Cons: Reliability and manufacturing questions are now being addressed
  - EPC eGaN FET showing increasing promise as next generation solution (Gen2 superior to Gen1)
- Future work
  - Proton (SEE and DDD) and TID testing
  - Identification of the SEE mechanism with follow on modeling
    - Include angle, ion-energy, and bias effects