A General Approach to MEMS Reliability Assurance

Joanne Wellman--JPL

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, Code AE, under the NASA Electronics Parts and Packaging Program (NEPP)
Other Contributors:

Russell A. Lawton

Dr. Gisela Lin
Prof. Leslie Phinney, UIUC

Ron Ruiz
Ken Evans

Adalberto Garcia
Helen Avila
Prudencio Alonso
MEMS RELIABILITY ASSURANCE

OUTLINE

• MEMS Reliability Concerns

• Our approach to MEMS Reliability

• MEMS Reliability Alliance
 - In theory
 - In practice
RELIABILITY ISSUES: MATERIAL PROPERTIES

- Fracture/failure mechanisms
- Elastic modulus
- Poisson's ratio
- Fracture toughness
- Electrical properties (migration, etc.)
- Interfacial strength
- Coefficient of thermal expansion (CTE)
MEMS RELIABILITY ASSURANCE

RELIABILITY ISSUES: PROCESSING

- Residual stresses
- Grain size
- Stiction phenomena
- Doping
- Etching parameters
- Surface roughness
- Deposition methods, parameters
- Post-process release etching
- Post-process drying method (stiction)
MEMS RELIABILITY ASSURANCE

RELIABILITY ISSUES: DEVICE-LEVEL METROLOGY

- Grain size
- Surface roughness
- High resolution cross-sectioning
- Microscale crack propagation visualization
- Real time performance (movement) visualization
- Device design effects (corners, etch holes, etc.)
FABRICATION, MANUFACTURING VARIATIONS

- Doping
- Etching parameters
- Deposition methods, parameters
- Post-process release etching
- Post-process drying method (stiction)
RELIABILITY ISSUES: ENVIRONMENTAL EFFECTS

- Storage, humidity effects
- Radiation tolerance
- Chemical exposure effects
- Biocompatibility
- Effects of extreme heat or cold
- Effect of shock
RELIABILITY ISSUES: SYSTEM-LEVEL

• Packaging effects
• Support electronics, noise
• Fatigue and long term operation effects
Our Approach to MEMS Reliability

Feed test results and characterization of MEMS devices back into the design, modeling, and fabrication phases of MEMS development and production.
MEMS Reliability Alliance

MEMSCAP: Design Tools
Model Validation

CRONOS/
JDS Uniphase: MEMS Foundry/Parts
Process Characterization

JPL: Design MEMS Test Structures
Characterization/Testing
Space Flight Qualification
Poly1 and poly2 are structural polysilicon layers, while the oxides are sacrificial layers in that they do not appear in the final structure. Poly0 is used as a ground plane and the nitride is used for electric isolation. Metal layer on top (gold) is for optional contact metalization.
Footprint of MUMPS run 36 test structures
Footprint of MUMPS run 37 test structures
Test Structure Types:

- Poly1 and poly2 clamped-clamped and clamped-free cantilever beams for residual stress and elastic modulus assessment
- Wide polysilicon cantilevers
- Stiction beam test array
- Hinged flap array for post-process residue study
- Vibration test structure
- Test array to measure torsional shear and change in resistance due to torsion in polysilicon
- Fracture toughness test structures
- Polysilicon fracture test structure array
- In-plane residual stress visual readout verniers
Material Properties:

- Fracture/failure mechanisms
- Elastic modulus
- Poisson's ratio
- Fracture toughness
- Electrical properties (migration, etc.)
- Interfacial strength
- Coefficient of thermal expansion (CTE)

3000X SEM image of fractured unreleased cantilever beam array damaged during dicing.
Process Feedback

- Residual stresses
- Grain size
- Stiction phenomena
- Doping
- Etching parameters
- Surface roughness
- Deposition methods, parameters
- Post-process release etching
- Post-process drying method (stiction)

High-resolution STEM image of oxide and polysilicon layers deposited in MUMPS process. Notice the clear definition of grain boundaries and interfaces.
SEM side view of a poly2 hinge after poly1 plate has been rotated 180°, showing the ridge created by the dimple clearly.

SEM photo of a hinge without the dimple patterned through it. While rotating the poly1 plate, the hinge pin got pegged under the poly2 staple. Any further rotation will break the pin. Also, rotation of the poly1 plate is now irreversible.
Environmental Effects:

- Storage, humidity effects
- Radiation tolerance
- Chemical exposure effects
- Biocompatibility
- Effects of extreme heat or cold
- Effect of shock

AFM images of the top of a poly2 layer after sacrificial layer removal for a MUMPs 37 chip. Scan size is 5μm X 5μm and height data scale on the order of 40 nm.
FUTURE PLANS:

• Complete testing and analysis on existing test structures
• Expand library of test structures
• Expand MEMS Reliability Alliance to include new processes
• Include functional devices (not test structures) into reliability framework