Radiation Effects on Current Field Programmable Technologies

R. Katz
K. LaBel
NASA Goddard Space Flight Center

J.J. Wang
B. Cronquist
Actel Corporation

R. Koga
S. Penzin
Aerospace Corporation

G. Swift
Jet Propulsion Laboratory/CIT
Summary

I. Scope of Presentation

II. Device Categories

III. Radiation Performance
 A. Configuration Technologies
 B. Fabrication Considerations
 C. Design
 D. Architectural Features

IV. Conclusion
Basic Architecture

A Sea of Gates Architecture
Has the Routing Network
Above The Logic Array

Channeled FPGA Architecture

Atmel Architecture - Lowest Level

Actel Architecture
Device Categories

- Programmable Substrate
- PLD/CPLD
- Field Programmable Gate Arrays
 - SRAM
 - Non-Volatile
 - Antifuse
 - Amorphous Silicon
 - Dielectric
- LPGA/One-Mask
- Mask-Programmed ASIC
SER - Single Event Reprogramming

SER Cross Section detected by function failure. This curve serves as a lower bound.
FPGA Configuration Memory

<table>
<thead>
<tr>
<th>Device Class</th>
<th>User Flip-Flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A14100A</td>
<td>905</td>
</tr>
<tr>
<td>AT6010</td>
<td>131,000</td>
</tr>
<tr>
<td>XC4020</td>
<td>329,000</td>
</tr>
<tr>
<td>XC6216</td>
<td>173,000</td>
</tr>
<tr>
<td>2C26</td>
<td>274,000</td>
</tr>
</tbody>
</table>

- This Device Class Typically Has 1-2,000 User Flip-Flops
- Configuration Memory Increases SEU Cross Section By ~ 2 Orders of Magnitude

- Hardwired Off (MODE PIN)
Antifuse Radiation Effects

- Unprogrammed Reliability is the Key Concern
 - Both Dielectric and Amorphous Silicon Can be Damaged

- Manufacturers: Actel, L-M, Pico Systems, Quick Logic, UTMC

- Circuits and Instrumentation Techniques for Characterization

- Investigated Failure Thresholds and Cross Sections
 - Improvements in Antifuse Design
 - Effects of Materials

- Failure Analysis Techniques and Results
Switch Technology

ONO Antifuse
Poly/ONO/N++
Heavy as doped Poly/N++
Thickness controlled by CVD nitride
Programs ~ 18V
Typical Toxono ~ 85 Å
RH1280 Toxono = 99 Å
R = 200 - 500 ohms

TD Amorphous Silicon Antifuse
‘Pancake’ Stack Between Metal 2 and 3
Designed for 3.6V Operation in Sea Of Gates FPGA

‘Logic’ Devices Program at ~ 10V
‘Substrate’ Devices Program at ~ 30V
Thickness ~ 500 - 1000 Å
R = 20 - 100 ohms
Antifuse Failure Thresholds

Antifuse Threshold Voltage

Antifuse Electric Field Strength

Two processes were used for this 3.3 V device:
Process 1 failed immediately @ 3.3 VDC
Process 2 didn't fail @ 4.0 VDC

- A1230A (87 A)
- RH1020 (96A)
- RH1280 (99A)
- Pico-amorphous (500A)
- TD-amorphous (1000A)
- SiO₂ - reference
Dielectric Antifuse Cross Sections

ONO Antifuse Testing with Iodine (LET=60)
Bias = 5.5 VDC
Normal Incidence

Fluence (ions/cm2)

I_{cc} (mA)

0 200x103 400x103 600x103 800x103 1x106

A1280A @ 87 A
RH1020 @ 96 A
RH1280 @ 99 A
Latchup Performance

<table>
<thead>
<tr>
<th>Latched</th>
<th>Not Latched</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1020B/TI</td>
<td>RH1020</td>
</tr>
<tr>
<td>🌟 A1020B/MEC</td>
<td>A1280XL (0.6, 0.8)</td>
</tr>
<tr>
<td>A32200DX</td>
<td>A32140DX</td>
</tr>
<tr>
<td>AT6002</td>
<td>A1460A, A14100A</td>
</tr>
<tr>
<td>QYH580 @ 5.5V</td>
<td>QYH580 @ 3.6V</td>
</tr>
<tr>
<td>GF10009K</td>
<td>CLAy-31</td>
</tr>
<tr>
<td>2C40</td>
<td>KJ911</td>
</tr>
<tr>
<td>pASIC 1</td>
<td>MKJ911</td>
</tr>
<tr>
<td>XC3090</td>
<td></td>
</tr>
</tbody>
</table>

- Latched devices have latchup performance values.
- Not Latched devices do not have latchup performance values.

Note: The table entries represent specific latchup performance values for certain devices.
Latchup Susceptibilities - Bulk

- 0.8 um Bulk Process
- High Latchup Threshold @ 5.0 V
- No Latchup Detected @ 3.6 V

QYH580 Latchup Data (S/Ns 1, 3, 4)

- LET (MeV·cm2/mg)
- X-Section (sq. cm)
- $V_{CC} = 3.3$ V
- $V_{CC} = 3.6$ V
- $V_{CC} = 5.0$ V

Plot:
- X-Axis: LET (MeV·cm2/mg)
- Y-Axis: X-Section (sq. cm)
- Different markers for different V_{CC} values

Graph shows the latchup data with the specified threshold and absence of latchup at a lower voltage.
Latchup Susceptibilities - EPI

A3200DX Latchup Data

A32200DX Readily Latches
A32140DX No Latchup

0.6 um Epi Process
Epi Thickness: 8.5 - 9.0 um
For Two Lots Tested

A32200DX: SRAM
A32140DX: No SRAM
SRAM Structure Lacks Guard Rings
Total Dose Performance

<table>
<thead>
<tr>
<th>Device</th>
<th>Recent Capability in kRads (Si)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1280A</td>
<td>1.0 m (MEC) ~ 7</td>
</tr>
<tr>
<td>A1280XL</td>
<td>0.8 m (WIN) < 3</td>
</tr>
<tr>
<td>RH1280</td>
<td>0.8 m (L-M) > 300</td>
</tr>
<tr>
<td>A1280XL</td>
<td>0.6 m (CH) < 3</td>
</tr>
<tr>
<td>Act 3</td>
<td>0.8 m (MEC) 15-50+</td>
</tr>
<tr>
<td>Act 3</td>
<td>0.8 m (WIN) < 5</td>
</tr>
<tr>
<td>A32140DX</td>
<td>0.6 m (CH) < 3</td>
</tr>
<tr>
<td>MKJ911</td>
<td>0.6 m (MEC) 30-50</td>
</tr>
<tr>
<td>KJ911</td>
<td>0.6 m (L-M) > 200</td>
</tr>
<tr>
<td>QYH580</td>
<td>0.8 m (CHIPX) ~ 15</td>
</tr>
</tbody>
</table>

- Act 1, Act 2 Data
- Testing with Protons
- Charge Pump Investigation
 - Internal Measurements
- Design vs. Process
 - A1020Z
TID: Recent Devices

(M)KJ911 Total Dose Performance

A32140DX (Chartered) TID Test
0.5 kRad (Si) / Hour

Hit Power Supply Trip Point
Proton Test: Recent Devices

MKJ911 196 MeV Proton Test
Dynamic Bias

Delta Current (mA)

Total Fluence = 810 x 10^9 protons/cm^2
Zero upsets over the course of the test.

rbk 11/21/96
Proton Test: Recent Devices

A1280XL 196 MeV Proton Test
Dynamic Bias

- A1280XL S/N 61 - 0.6 um; Chartered
- A1280XL S/N 62 - 0.6 um; Chartered
- A1280XL S/N 82 - 0.8 um; Windbond
Sensitivity to Protons

<table>
<thead>
<tr>
<th>Upset</th>
<th>Likely To Upset</th>
<th>No Upset</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1280XL ‘S’ (0.6, 0.8)</td>
<td></td>
<td>A1280XL ‘C’, I/O</td>
</tr>
<tr>
<td>RH1280 ‘S’ (0.8)</td>
<td></td>
<td>RH1280 ‘C’, I/O</td>
</tr>
<tr>
<td>A1460A ‘S’, I/O (0.8)</td>
<td>Act 3 ‘S’, I/O (0.6)</td>
<td>A1460A ‘C’ (0.8)</td>
</tr>
<tr>
<td>A14100A ‘S’, I/O (0.8)</td>
<td></td>
<td>A14100A ‘C’ (0.8)</td>
</tr>
<tr>
<td>CLAy-31 (0.8)</td>
<td>XC3090 (0.65)</td>
<td>MKJ911 (0.6 um)</td>
</tr>
<tr>
<td>AT6002 (data) (0.8)</td>
<td>- LET<sub>TH</sub> ~ 4-7</td>
<td>QYH500 3.3, 5.0V (0.8)</td>
</tr>
<tr>
<td></td>
<td>2C04 (config)</td>
<td>- high LET<sub>TH</sub></td>
</tr>
<tr>
<td></td>
<td>- LET<sub>TH</sub> < 7.9</td>
<td></td>
</tr>
</tbody>
</table>
SEU: 5V vs. 3.3V Performance

QYH580 SEU Data (S/Ns 1, 3, 4)

A1460A/RK3 SEU DATA

X-Section/F-F (sq. cm.)

10^5
10^6
10^7
10^8
10^9
10^10

LET (MeV-cm^2/mg)

0 10 20 30 40 50 60 70 80

X-Section/F-F (sq. cm.)

10^{-10}
10^{-8}
10^{-6}
10^{-4}
10^{-2}

LET (MeV-cm^2/mg)

0 10 20 30 40 50 60 70

3.3 Volts
5.0 Volts

CMOD(5V)
SMOD(5V)
CMOD(3.3)
SMOD(3.3)
Flip-Flop Design

Effect of *Hardwired* F-F Design

Effect of *Routed* F-F Design

1E-8 Denotes No Upset

LET (MeV-cm²/mg)

- TD 'S' F-F @ 3.0V, 0.6 um
- A1280A 'S' Storing '0' @ 5.0V
- A1280A 'S' Storing '1' @ 5.0V

X-Section F-F (sq. cm)

LET (MeV-cm²/mg)

- QYH580 Balanced F-F
- A1280A 'C' Storing '0'
- A1280A 'C' Storing '1'
Architectural Features

• Configuration Storage Technology
 ‘Soft’ SRAM Requires Monitor & System Protection
 Input pin ? Output Pin
 Internal Driver Fights (Routing, Tri-State Bus)
 State of the Device: i.e., Programmed, POR

• Higher Complexity Structures
 I/O Modules
 XC6216: Bit Controls Clock On/Off

• DFT/IEEE JTAG 1149.1 Boundary Scan
 State Machine Controls Mode of Device
 Potential For Failure/Damage Modes
 Hard Reset Should Be Implemented
I/O Module Architectures

Act 1: No Storage
Act 2 Latch: \(\text{LET}_{TH} \sim 20\text{’s} \)
Act 3 Reg: \(\text{LET}_{TH} \sim 10 \)

XC4000 (SRAM config)
- input or output
- pullup/pulldown
- slew-rate control
- input delay
- etc
- \(\text{LET} \sim 4-7 \)

XC4000 and XC4000A Families

Input/Output Block

Act 2 Input/Output Block

Act 3 Input/Output Block
IEEE JTAG 1149.1

- Boundary Test Standard
- On All Modern FPGAs
- Can Command Each Pin as an Output (EXTST)
- Variety of Test Modes
- Optional Hard-wired Reset
In-Flight Radiation Experiment

- Power Control Circuit Bus A -- 5V/3.3V
 - Actel A1460A DUT
 - Actel A1460A DUT
 - Actel A1460A DUT

- Power Control Circuit Bus B -- 5V only
 - Actel A1460A DUT
 - Actel A1460A DUT
 - Actel A1460A DUT

- A1280A Interface and Control
 - 250 kHz DUT Clock
 - 1.0 MHz Clock
 - AD590
 - Dosimeter
 - Programmable Bias & Current Monitor

- Telemetry and Commands
 - Shield

- Shield

- MPTB Connector
MPTB FPGA Board
Conclusions

- Scaling vs. Process vs. Voltage vs. Design
 - Many ‘Rules of Thumb’ Fail
 - Testing and Analysis Required
- New, Modern Architectural Features
 - Increase Rad Effects and Affect System Reliability
 - May Introduce New Failure Modes
- COTS Circuit Structures and Radiation
 - ‘Qualification By Similarity’ Can Fail
 - Screening Procedures for Antifuses Critical
- Test Methods Must Be Continuously Updated