Making Electronic Parts and Packaging Technology Viable for Flight Projects

Richard Brace
Deputy Project Manager
Mars Exploration Rover Project

May 16, 2001
Making Electronic Parts and Packing Technology Viable for Flight Projects

Example Project Life Cycle

Fall 2001
- Phase B, System Design

Spring 2002
- Preliminary Subsystem Designs [Parts selection and ordering]
- Subsystem Detailed Design
- Subsystem PDRs and Qualification Testing [Packaging Qualification complete]

Early 2003
- Subsystem Flight Build
- Subsystem CDRs and Flight Acceptance Testing [Limited changes to make play]

Early 2004
- System Test

Spring 2005
- Launch Campaign
• There are currently many different types of missions either in development or in planning
 – Earth orbiters and Deep Space probes
 – Landers and rovers
 – Technology demonstrations and Science missions

• All of these missions can have widely varying radiation, thermal and dynamics requirements that can affect both electronics parts selection and electronics packaging

• There are two requirements that are common for all missions which also affect electronic parts selection and electronic parts packaging
 – The hardware must work
 – The objectives for the mission must be met
• What does this mean for NEPP?
 – In order for technologies to be acceptable for flight use they must have
demonstrated enough maturity to represent acceptable risk to the project

 – “Acceptable risk” is hard to define as varies from project-to-project
depending on the mission objectives

 – Determine what are the important criteria that encompasses the needs of
the projects and develop a methodology to support those needs

 – Provide for higher levels of integration to reduce size and mass
Making Electronic Parts and Packing Technology Viable for Flight Projects

• Electronic Parts

 – Development of a database that can provide the capabilities, availability, and reliability and make it readily available to designers

 – In the case of impactors and penetrators, what are the dynamic environments and are they encompassed by the existing parts screens?

 – In the case of any surface missions, what are the thermal extremes, operating and non-operating, and will the devices meet specification/survive?

 – What are the radiation environment capabilities for new technologies?
• Electronic Packaging

 – Database of new components with footprints for packaging designs

 – In the case of impactors and penetrators, what are the dynamic environments and what packaging techniques are qualified over those levels

 – In the case of any surface missions, what are the thermal extremes, operating and non-operating, and what packaging techniques are qualified over those levels

 – Compatible with contamination control and planetary protection requirements
• Continued pressure to make the spacecraft small, reduced mass and reduced power consumption
 – For a wide variety of projects there is a need to infuse new technology to accomplish this desire
 – Technology needs to be sufficiently mature to represent acceptable risk to the project both technically and programmatically

• Technology programs need to be looking at the family of projects that are five or more years into the future to understand the spacecraft and instruments requirements