HST’s Radiation Environment Inferred from Charge-Collection Modeling of NICMOS Darkframes

Ray Ladbury, Scott Kniffin – GSFC/Orbital
Jim Pickel – PR&T, Inc.
Robert Reed – GSFC/NASA
George Gee, Bryan Fodness – SGT, Inc.
Tom Jordan – EMP Consultants
Paul Marshall – Consultant
Don Figer, Bernie Rauscher, L. Bergeron – STSCI
Acknowledgments

• Thanks are due to many for this work:

• My collaborators, especially George Gee and Jim Pickel and Robert Reed

• NGST

• Ken Label
NGST and the Early Universe

• The Next Generation Space Telescope’s (NGST) mission is to probe the extremities of the Universe in the infrared
 – Earliest moments: Big Bang and the formation of the first stars
 – The highest energies: Black holes and active galactic nuclei
 – The most distant objects: Quasars

• Instruments must meet very stringent requirements
 – Sensitivity to low-energy IR photons (0.5-30 microns)
 • requires cryogenic operation
 – Long integration times to detect faint sources (>1000 s)
 – High sensitivity (read noise requirement<10 electrons; goal is <3)

• In short, NGST instruments will be excellent radiation detectors.
 – Radiation that would normally only contribute to TID can contaminate data

• The need for unprecedented precision poses concerns:
 – Primary and secondary environments more uncertain at low energies.
 – Infrared Space Observatory saw higher-than-expected backgrounds.
Become an Expert on the Unknown—Quick!

- Hubble’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a natural place to turn for experience.
 - Detectors are photovoltaic $\text{Hg}_x\text{Cd}_{(1-x)}\text{Te}$— similar to a NGST technology
 - Ideal datasets and known radiation environment
- NICMOS darkframe data taken with filter wheel in closed position
 - No illumination of detectors
 - Several data sets taken at different positions in orbit and after different passes through the South Atlantic Anomaly
 - Purpose of data was calibration
 - Understanding dark currents
 - Cosmic ray rejection algorithms
 - Note: only 70% of cosmic rays actually get rejected
 - Use the detector itself as an environmental monitor
Outline

- NICMOS detectors and their radiation response
- NICMOS Darkframe Data Sets
- Data Processing and Analysis
- Model of Detector Charge collection
- Implications of Charge-Collection Model for NICMOS
- Results

VII. Conclusions
NICMOS Detectors

NICMOS Unit Cell

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Radiation Effects in NICMOS Detectors

- Effects of radiation in photovoltaic infrared detectors
 - Prompt Direct ionization
 - Primary particles—protons and electrons; higher energy means lower LET
 - Random in location and usually time
 - Secondary particles—mainly protons and electrons; lower energy, high LET
 - May be spatially and temporally correlated with a primary strike… or not
 - Radioactivation
 - Low energy electrons and gamma rays (alphas probably too short range)
 - Rate decays exponentially with time.
 - Persistence
 - At 77 K, charge trapped in shallow traps results in increased dark current; magnitude decreases exponentially with time (time constant ~160±60 sec.)
 - Phosphorescence
 - Light given off when trapped charge is released. Very low charge yield, but may result in a diffuse contamination.

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
NICMOS Darkframes

- Purpose is calibration of detectors and cosmic-ray rejection routine
 - Dark current measurement
 - Cosmic ray rejection
- Datasets include
 - Up to 17 frames with exposure times from 0.3-256 seconds

- Darkframes represent a range of prior radiation exposure and time since last exposure.

Table I: SAA Exposures

<table>
<thead>
<tr>
<th>Date</th>
<th>SAA exposure</th>
<th>Duration of exposure</th>
<th>Time Since Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/25/98</td>
<td>Severe</td>
<td>30 minutes</td>
<td>35 minutes</td>
</tr>
<tr>
<td>4/23/98</td>
<td>Moderate</td>
<td>15 minutes</td>
<td>6 minutes</td>
</tr>
<tr>
<td>5/20/98</td>
<td>Light</td>
<td>10 Minutes</td>
<td>39 minutes</td>
</tr>
<tr>
<td>7/16/98</td>
<td>Very Light</td>
<td>8 minutes</td>
<td>6 minutes</td>
</tr>
<tr>
<td>8/12/98</td>
<td>Light</td>
<td>10 minutes</td>
<td>336 minutes</td>
</tr>
</tbody>
</table>
Darkframes Example I

NICMOS Observations (April 23, 1998)

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Darkframes Example II

NiCMOS Observations (March 25, 1998)

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Darkframe Processing and Analysis

- Data processing involves:
 - Identifying pixels with high values
 - Correlating pixel contents over time and with nearest and more distant neighbors.
 - Identifies hot pixels and gives some information about particle trajectory and possible associated secondary particles.
 - Looking for evidence of persistence.
 - Identifying probable path lengths when possible
 - Resolution is limited by pixel pitch and depth of charge collection (diffusion-layer thickness)
 - Particles incident at glancing angles provide more information.
 - Assembling “hits” from individual pixel readings.
 - Looking at temporal and spatial correlations in the data
- With 5 datasets, 17 frames per dataset and >65000 pixels per frame, resulting data is unwieldy → >5 Gbits and growing
IR Detector Model

- IR detector model has 2 different charge-collection regions:
 - HgCdTe detector should dominate
 - Silicon readout integrated circuit

- Note that charge is also collected by two different mechanisms:
 - Drift in the high-field depletion region
 - Diffusion in the field-free region below
 - Diffusion region much thicker
 - diffusion can dominate

- Model is generalized from

- See the talk by Jim Pickel (D-1, 3:40)
Primary Environment and Charge Deposition

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002

Secondary Environment

Modeled with NOVICE Monte Carlo Program.

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Secondary Environment (Cont’d)

Note that Most of the deltas have energies from ~100 keV to ~1 MeV \Rightarrow LET of ~ 1000-2000 electrons/micron.
Implications of Model for NICMOS—Diffusion Length

\[L_{\text{diff}} = 5 \text{ um} \]

\[L_{\text{diff}} = 10 \text{ um} \]

Pitch = 30 \text{ um}
Zdepl = 1 \text{ um}

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Cross-Talk and Diffusion Layer

Crosstalk between adjacent Pixels depends on pixel pitch and diffusion-layer thickness.

Selecting adjacent pixels with nearly equal counts allows us to estimate both crosstalk and diffusion-layer thickness.

Best estimate is about 1% crosstalk, implying a diffusion layer thickness of 5-10 microns for 40 micron-pitch pixels.
Comparison of Results to Model

- GCR environment predicts an average of 35-40 proton hits
 - most proton hits yield ~8000-15000 electrons in the struck pixel.
 - Maximum is ~35000 electrons, but with low probability

<table>
<thead>
<tr>
<th>Electrons</th>
<th>3/25/98</th>
<th>4/23/98</th>
<th>5/20/98</th>
<th>7/16/98</th>
<th>8/12/98</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000-15000</td>
<td>29</td>
<td>32</td>
<td>47</td>
<td>24</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>15000-35000</td>
<td>18</td>
<td>21</td>
<td>26</td>
<td>22</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>>35000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

- What is responsible for these hits?
 - GCR protons account for most hits in the 8000-35000 electron range
 - ~50% of “proton” hit generate>8000 e⁻ in 2 or more pixels
 - ~20% of protons also generate deltas; may also contribute
 - These two facts could account for frequencies seen in this count range
 - Pixels with >35000 e⁻ must be low-energy protons or light ions
 - No evidence of systematic time dependence in these signals
Secondary-Primary Correlations

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Comparison of Hit Size

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
Hit Size: Model vs. Measurements

- Agreement is good at low electron counts (<1500 e-)
- Also good in the range expected for proton hits (~8000-15000 e-)
- Large events are not inconsistent with minimum-ionizing alpha strikes
 - Also not inconsistent with moderate-energy protons
- Two main areas of inconsistency
 - High end of proton range (~15000-35000 e-):
 - May be understood as multi-pixel hits and/or deltas
 - No clear time dependence
 - 1500-5000 electron count range: discrepancy is ~6x
 - No clear time dependence
 - Inconsistency worse for frames with vary large events
 - Range-limited secondaries??
 - Effects of Si ROIC or need for model refinement?
- At low electron count (<1000), may be evidence of time dependence
 - Some datasets exhibit downward trend with time. Some do not.
Conclusions and Future Work

- A model of charge collection and sharing is essential to understanding radiation-induced backgrounds in IR detectors
 - Diffusion plays a very important role in charge collection
 - Understanding the charge yield can allow probable identity (or identities) of incident particle to be established.
- Backgrounds appear to be higher than expected in some cases
 - 8000-35000 e⁻: protons and high-energy secondaries (deltas, etc.) ~15%
 - 1500-5000 e⁻: discrepancy is significant, ~6x
 - Causes could be range limited secondaries or issues with model
- Future work
 - Investigate 1500-5000 e⁻ range
 - Examine possible associations of secondaries with primary hits
 - Refine pattern recognition for particle ID
 - Contribute to development of cosmic-ray rejection algorithms

Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002
A New, Improved NICMOS

![Graph showing frequency vs. hit size](image_url)