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No humidity in space. Why moisture 

concerns?

We need to assure that no moisture related 

failures occur during the ground phase 

integration and testing period (2 to 5 years).

Quality assurance strategy for PEMs:

▪ Moisture prevention

▪ Adequate qualification testing



MRQW  Dec '02 3

Quality assurance strategy for PEMs 

for military and space applications

Moisture prevention strategy:
Military applications: Wafer Applied Seal for PEM

Protection (WASPP);

Space applications: Virtual monitoring/simulation of 

the moisture level variations and baking of 

components and assemblies.

Adequate testing:
Military applications: To assure reliability for 15 to 20 years 
of storage and operation in harsh humid environments.

Space applications: To assure reliability for 5 years 

maximum in controlled laboratory conditions.
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Purpose and Outline

The  purpose is to discuss:

Moisture characteristics of MCs and how they can be 
used for the moisture prevention strategy and for 
development of adequate testing.
The relevance of HAST for PEMs intended for space 
applications.

Outline:

Part I:

• Bake-out conditions for PEMs;

• Diffusion characteristics of molding compounds .

Part II:

• Acceleration factors of HAST. 

• What might be an adequate testing?
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Part I.  Moisture Diffusion 

Characteristics and Their Measurement

The first step in any MC or PEM 

degradation process is moisture 

diffusion.     

The characteristic times of 

diffusion are important for implementing 

the moisture prevention strategy.
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Characteristic times of moisture diffusion 
in plastic encapsulated parts
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Diffusion characteristics of 
epoxy encapsulating materials
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Calculated bake times at 125 oC and 
JEDEC recommendations

Three body thickness groups per 
IPC/JEDEC J-STD-033A, July 2002:

<1.4 mm; <2 mm;< 4.5 mm

• Ignoring real size
of the parts
causes significant
errors.

• JEDEC is focused
on SMT reflow
soldering and
might be not
adequate for
moisture control
purposes.

Note:
• 2a and 5a are levels

of moisture sensitivity.
• part saturated at

30 oC/85% RH
IPC-SM-786A, ’95: < >2 mm
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In-situ non-isothermal technique for D(T) 

measurements

Areas of application
▪ Moisture sorption simulation (virtual monitoring of 

moisture level).

▪ Calculation of bake-out conditions.

▪ Lot characterization of molding compound.
(ROBOCOTS: need rapid assessment methods)

▪ Evaluation of moisture leaks along the leads of a 
plastic package.   

▪ Development of adequate moisture stress testing 
(HAST alternative).

A. Teverovsky, “A Rapid Technique for 
Moisture Diffusion Characterization of 
Molding Compounds in PEMs“, 
http://nepp.nasa.gov
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Part II.  Highly Accelerated Stress Test 

(HAST)

Do we need to use same environmental 

stress testing as for PEMs intended for 

harsh humid conditions?



MRQW  Dec '02 11

Accelerated moisture resistance tests

▪JESD22-A102-C (unbiased autoclave):
121 oC, 100% RH, 24 to 336 hrs (96 hr typical).

▪JESD22-A118 (unbiased HAST):
Cond. A: 130 oC, 85% RH, 96 hrs.

Cond. B: 110 oC, 85% RH, 264 hrs.

▪JESD22-A110-B (biased HAST): 
Cond. A: 130 oC, 85% RH, 96 hrs.

Cond. B: 110 oC, 85% RH, 264 hrs.

Typical HAST conditions: bias at 130 oC, 85% RH

▪ 96 hrs per JESD22-A110-B.

▪ 150 hrs per NAVSEA SD18 (Part Requirement & Application Guide).

▪ 500 hrs per PRF38535 spec. (for technology characterization).

NASA projects:  250 hrs?

Equivalent 

to 1000 

hours at 

85 oC and 

85% RH
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HAST failure mechanisms

Package level

▪Corrosion of the leads.

▪Dendrite formation (on the

surface and inside

packages).

▪Swelling/shrinkage:

✓Delaminations;

✓Solder ball failures in PBGA 

and flip-chip technology;

✓warpage of large packages;

✓ parametric shifts in linear 

devices.
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HAST failure mechanisms

Die level:
▪Corrosion of Al metallization.

▪Dendrites between metallization

lines.

▪Leakage currents.

▪Charge instability (lateral, ion

drift, hot electron).
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What is the HAST acceleration?
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Test results on linear 
devices

Part DC Pack.

type

QTY

tested

QTY

failed

Failure

mode

Vref 0112 SOIC8 31 3
1- increased Vout

2 - catastrophic

Opamp 0101 SOIC16 30 2 -

Instr. 
amp

0033 SOIC8 30 30
Excessive input 

currents

FET1 0041 SOT223 29 28 IDS, VGTH

FET2 0040 D2Pak 30 29
~ 60% parametric 

shift

HAST: 130 oC, 85% RH, 250 hours

11 part types out 

of 25 failed HAST



MRQW  Dec '02 16

Is HAST adequate for normal conditions?

Testing temperature (130 oC) is above the operational 

range for many parts.

Degradation of molding compound:

▪ Decrease of Tg (up to 100 oC in resins and up to 30 oC 

in MCs). 

▪ Enhanced creep.

▪ Decrease of the tensile stress and adhesion.

The model accelerates mostly corrosion failures, but 

corrosion is no longer a prime concern.

Moisture assisted hot-carrier degradation might

have U < 0.
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Irreversible changes in MCs: 
An example
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Test: moisture uptake and swelling after HAST 
were measured on two epoxy molding compounds.

Conditions: saturation with moisture at 85% RH 
and different temperatures.

Additional 
mechanical 
stresses due to 
swelling:
  AE[(MC -
LF)T + m], 

At MC  LF
mechanical 
stresses are due 
only to moisture 
sorption.

An increase in 

volume might 

cause  

delaminations 

and mechanical 

failures.
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Do we need moisture testing?

Ionic dissociation in 
polymer:
Charge carriers are impurity ions generated 

by dissociation of a salt MA

The equilibrium 
constant:
no is the concentration of salt molecules;  f
is the fractional degree of dissociation
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2. Another reason:
Moisture activates ionic impurities 

similar to temperature. Moisture 
testing might accelerate degradation 

mechanisms related to charge 
instability.
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A possible alternative to HAST: MS + HTB

Soaking in 

humidity 

chamber for 

48 hrs at 

110 oC and 

85% RH

Note: C/Co = 1 corresponds to the equilibrium moisture saturation at 100% RH.

Testing at 85 oC.
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Calculated test time and equivalent 

time of operation
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conditions:
RH = 95%,
T = 110 oC,

t = 30 hr

Test conditions:
RHeff  90%

70 oC < T < 105 oC

Operating 
conditions

(environment):
RH =50%
T = 20 oCPackage thickness 2 mm
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HAST alternative: MS + HTB testing 

Input: Package size; 
D(T) data; ground phase 
conditions; maximum storage 
and operation temperatures.

Set RH and T for MS conditions

MS + HTB Test conditions

C(t) simulation

Estimate MS time

Set T for HTB conditions

Calculate A and 

C(t) simulation

Estimate HTB time

Is A & 
suitable?

Algorithm for calculation of 

MS+HTB testing conditions

+

-
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Conclusion

Suggested quality assurance strategy: moisture 
content control (virtual monitoring and baking) + 
adequate testing.

The moisture prevention strategy can be 
implemented by assessment of moisture content 
and calculations of the bake-out conditions 
based on D(T) data. 

The existing HAST conditions are too harsh for 
PEMs intended for space applications.  A 
possible alternative to HAST might be MS + HTB 
testing. 

Additional analysis of moisture induced 
parametric degradation and acceleration factors 
is necessary.


