Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Quiesup Kim, Shri G. Agarwal, and Tetsuo F. Miyahira

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr., Pasadena, CA 91109-8099
Purpose

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

• Characterize the electrical performance and reliabilities as potential space electronic parts under extreme low and high temperature (-125 ~ +150°C) environments extending nominal device specifications (-55 ~ +125°C).

• Identify needed enabling technologies to improve operation, reliability, and lifetime of future space missions such as Mars.
Presentation outline

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

- Purpose
- Rad-Hard Quad Receivers
- Test Method
- Results
- Conclusions
- Recommendations
Rad-Hard Quad Receiver

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

- A quad differential line receiver designed for digital data transmission (logic input buffer) over balanced lines and meets the requirements of RS-422
- Radiation Hardened CMOS processing for low power consumption, high speed, and reliable operation in the most severe radiation environments.
 - Total Dose: 100 KRAD (Si)
 - Single Event Upset (SEU)
 - Single Event Latch-up (SEL)
 - Thresholds: >100 MeV/mg/cm2
- Supply current at low and high state
- Dynamic supply current
- Input current at high and low state
- Output high and low voltages
- Tri-state low and high current
- Propagation delays and transition times.
Rad-Hard Quad Receivers

- Radiation hardened RS-422 line receiver
- Has CMOS enable pin input levels and accepts TTL-level enable signals
- The two circuits are identical except for the configuration of the logic input buffers
- The HS-26C32RH has the same input characteristics (impedance, hysteresis, failsafe) as commercial types.
Functional Diagram

![Diagram]

Truth Table

<table>
<thead>
<tr>
<th>Device Power On/Off</th>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ON</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>ON</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>ON</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>ON</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>ON</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>ON</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Die Characteristics

• Die Dimensions: 2140µm x 3290 µm x 533µm ± 25.4µm
• Backside Finish: Silicon
• Passivation:
 – Type: SiO₂
 » Thickness: 800nm ± 100nm
• Metallization:
 – M1: Mo/TiW
 » Thickness: 580nm
 – M2: Al/Si/Cu
 » Thickness: 1000nm ± 100nm
• Substrate Potential: Internally connected to V_{DD}
• Worst Case Current Density: < 2.0E5 A/cm²
• Transistor Count: 315
• Process: Radiation Hardened CMOS, AVLSI
Die Layout
Schematic of the HS-26C(T)32RH input structure

Performance of Rad-Hard Quad Receivers at Extreme Temperatures
Parasitic Diodes for Each Output

FIGURE 3A.

FIGURE 3B.

FIGURE 3C.

FIGURE 3D.
Adequate input differential voltage for open line fault conditions

- Produces too small an input differential voltage in the open-line fault condition
- The internal input bias network is shunted by the termination resistor
- The internal input bias network is supplemented externally to compensate for the termination resistor
Input Fail/Safe Differential vs Z_{in} (Open)

$V_{TH(IN)} \leq 400\text{mV MAX}$

$V_{TH(IN)} \leq 200\text{mV TYP}$
Test Setups

Performance of Rad-Hard Quad Receivers at Extreme Temperatures
Characteristics of the quiescent power supply currents

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Supply Current Low State (ICCL) Versus Temperature & Power Supply Voltage

ICCL (MA)

VCC

25C
-100C
-125C

5.5V 5.0V 4.5V 3.6V 3.3V 3.0V 2.8V
Characteristics of the input current

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Supply Current High State (ICCH) Versus Temperature & Power Supply Voltage

- 25C
- -100C
- -125C

VCC

Q. Kim/NEPP/05/16/01
Characteristics of the dynamic supply current

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Dynamic Supply Current (ICCDY) Versus Temperature & Power Supply Voltage

VCC

ICCDY - (MA)

Temperature

25C

-100C

-125C

Power Supply Voltage

5.5V 5.0V 4.5V 3.6V 3.3V 3.0V 2.8V
Characteristics of the input high current

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Input High Current (IIH) Versus Temperature & Power Supply Voltage

- 25°C
- -100°C
- -125°C

VCC

IIH - (MA)

5.5V 5.0V 4.5V 3.6V 3.3V 3.0V 2.8V
Characteristics of the input low current

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

![Graph showing Input Low Current (IIL) Versus Temperature & Power Supply Voltage]
Characteristics of the output low voltage

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Output Low Voltage (VOL) Versus Temperature & Power Supply Voltage

VCC

VOL (MV)

-40.000
-30.000
-20.000
-10.000
0.000

5.5V 5.0V 4.5V 3.6V 3.3V 3.0V 2.8V

25C
-100C
-125C
Characteristics of the output high voltage

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Output High Voltage (VOH) Versus Temperature & Power Supply

- 25°C
- -100°C
- -125°C

VCC

5.5V 5.0V 4.5V 3.6V 3.3V 3.0V 2.8V

VOH (V)

0.000 1.000 2.000 3.000 4.000 5.000 6.000
Characteristics of the tri-state leakage current for output low

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Tristate Current with Output Low (IOZL) Versus Temperature & Power Supply Voltage

Q. Kim/NEPP/05/16/01
Characteristics of the tri-state leakage current for output high

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Tristate Current with Output High (IOZH) Versus Temperature & Power Supply Voltage

- 25°C
- -100°C
- -125°C

VCC

Q. Kim/NEPP/05/16/01
Characteristics of the propagation delay times from high to low state

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Propagation Delay High to Low (TPHL) Versus Temperature & Power Supply Voltage

VCC

TPHL - (NS)
Characteristics of the propagation delay times from low to high state

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Propagation Delay Low To High (TPLH) Versus Temperature and Power Supply Voltage

TPLH - (ns)

VCC

25C

-100C

-125C

Q. Kim/NEPP/05/16/01
Characteristics of the transition times from high to low state

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

Transition Time High to Low (TTHL) Versus Temperature & Power Supply Voltage

- 25°C
- -100°C
- -125°C
Conclusions

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

• The test results of the basic parameters of a radiation hardened quad receivers at extreme cold environment indicates that the device can be applied for the potential application in Mars exploration missions even at -125 °C if the operating parameters such as power supply voltages chosen properly.
Recommendations

Performance of Rad-Hard Quad Receivers at Extreme Temperatures

- We do not recommend using this part below 3V supply voltage in applications requiring operation down -125°C.
- The output rise and fall times, t_{TLH} and t_{THL}, were well within the SMD max limits of 12ns at 5V±10% and 15ns at 3.3V ± 10%.
- The parts though exhibited anomalous behavior at the conditions of 2.8V supply voltage and low temperatures.
Acknowledgements

The authors are grateful to their numerous colleagues including Jose Uribe of JPL for providing technical support for this study. In particular, the authors would also like to thank their colleagues at JPL for providing suggestions for the improvement of this device qualification for potential space missions. The authors appreciate the support of NASA HQ.

The study described in this report was carried out by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.