Charge Collection Analysis and SEU Modeling of SiGe HBTs for High-Speed Digital Logic

Guofu Niu, John D. Cressler, Ramkumar Krithivasan, Pamela Riggs, Barbara Randall, Paul Marshall, Robert Reed, and Barry Gilbert

Alabama Microelectronics Science and Technology Center
Electrical and Computer Engineering Department
200 Broun Hall, Auburn University, Auburn, AL 36849, USA

1 Mayo Foundation, Rochester, MN 55905 USA 2 Consultant to NASA-GSFC
3 NASA-GSFC, Code 562, Greenbelt, MD 20771, USA

This work was supported by DTRA, NASA-GSFC, and the Auburn University CSPAE.
Outline

• Motivation
• SiGe HBT Technology
• Total Dose and SEU Data
• Quasi-3D Charge Collection Analysis
• Circuit-level Modeling of SEU
• Preliminary Full-3D Simulations
• Summary
The Holy Grail of the Space Community:
- IC technology space-qualified without additional hardening

SiGe HBT BiCMOS Technology:
- bandgap engineering in Si (high yield + low cost)
- III-V device performance (> 70 GHz f_{max})
- system-on-a-chip integration (SiGe HBT + Si CMOS)

Radiation Tolerance:
- robust to total dose and displacement (gamma, neutron, proton)
- But … sensitive to SEU

Question:
Can We Use TCAD to Understand the SEU Charge Collection and Aid in Circuit-level SEU Mitigation?
IBM’s First-Generation SiGe HBT BiCMOS Technology (5HP)
- UHV/CVD epitaxial SiGe base
- deep and shallow trench isolation
- 5 layers of metal

No intentional radiation hardening

SiGe HBT Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawn Emitter Width (μm)</td>
<td>0.50</td>
</tr>
<tr>
<td>Actual Emitter Width (μm)</td>
<td>0.42</td>
</tr>
<tr>
<td>peak ?</td>
<td>115</td>
</tr>
<tr>
<td>V_A (V)</td>
<td>60</td>
</tr>
<tr>
<td>peak f_T (GHz)</td>
<td>50</td>
</tr>
<tr>
<td>peak f_{max} (GHz)</td>
<td>70</td>
</tr>
<tr>
<td>BV_{CEO} (V)</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Device Cross-section
SiGe HBT Proton Tolerance

- Robust to Very High Proton Fluence (multi-Mrad!)
 - minimal dc and ac degradation at circuit operating bias conditions
Preliminary SEU Data

- Low LET Threshold
- Conventional III-V Hardening (CSH) Doesn’t Work!

Quasi-3D Modeling

- Avant! MEDICI (2D – solve in cylindrical coordinates)
- Use SIMS + device layout
- Various bias conditions on E, B, C, Substrate
- R, C on collector to mimic ECL gate loading
- Top substrate contact, deep substrate to capture physics
- Input time-dependent charge into SPICE to model SEU

\[
i_{cn} = -(i_{bp} + i_{sp} + i_{en})
\]
Loading Effects

• R and C load conditions matter!
• Decrease in charge collection gives worse SEU!
Substrate Effects

- Decreasing substrate doping helps!
- Decreasing substrate bias helps!
- Decreasing substrate thickness helps!

Graph 1:
- $V_B=0V, V_E=0V$
- $V_{SUB}=-5.2V$
- $R=1.2k\Omega, C=15fF$
- Lines represent different substrate doping levels:
 - $5 \times 10^{15}/cm^3$
 - $1 \times 10^{17}/cm^3$
 - $1 \times 10^{19}/cm^3$

Graph 2:
- $V_{SUB}=-5.2V$
- $V_B=0V, V_E=0V$
- $R=10k\Omega, C=2fF$
Circuit-level SEU

- Use ECL D-Flip flop as high-speed logic metric
- Compare various architectures for same charge profile

Circuit A: Standard ECL

Circuit B: Unhardened CSH

Circuit C: Hardened CSH
Circuit-level Results

- Standard ECL architecture is best!
- Output cross-coupling causes the problem.

Circuit A: Standard ECL

Circuit B: Unhardened CSH
• Full 3D Device Simulation
 - better physics
 - off-center strikes
 - tough problem!

• Tool: ISE (DESSIS)
 - SiGe capability
 - SEU capability

• Typical Run:
 - 15,572 nodes
 - 208 min per timestep!
Time Evolution

- Ion Strike: LET = 10 (0.1 pC/µm), 10 µm depth, center of emitter
- E=B=C=0V, Sx = -5V, $R_C = 1.2$ k ohms, $C_C = 15$ fF

Initial Strike

After 6.0 psec
Time Evolution

After 50 psec

After 200 psec
Summary

• SiGe HBT BiCMOS Technology
 - bandgap engineering in Si (high speed + low cost)
 - inherent dose tolerance, but SEU sensitivity exists

• TCAD Can Be Used To Understand SEU in SiGe HBTs
 - R,C loading and bias effects
 - substrate effects
 - circuit architecture matters! (standard design best – area penalty)
 - adequate SEU immunity appears possible for SiGe HBT logic

To Be Done:
• Full 3D simulations
• 3D versus quasi-3D comparison
• True mixed-mode SEU simulation (not Q(t) + SPICE)
• Microbeam experiment (data versus model)