Packaging Technology for 500°C SiC Microsystems

Liang-Yu Chen*, Gary W. Hunter, and Philip G. Neudeck
*Ohio Aerospace Institute/NASA John H. Glenn Research Center at Lewis Field
Cleveland, OH 44135
Outline

- Background: motivations
- Electrical and mechanical characterization facilities
- Thick-film metallization based electrical interconnections
 - Validation results
- 500°C operable low electrical resistance die-attach
 - Method and evaluation results
- Summary
- High temperature MEMS packaging
 - Thermal mechanical stability of die-attach
- Acknowledgements
Background

- 500°C operable sensors/electronics have many applications in NASA aerospace missions
 - Sensors/electronics for combustion monitoring and control
 - Pressure sensor, gas chemical sensor, and flow sensor for aeronautic engine diagnosis and control
 - Sensors/electronics for space probes to inner solar planets
 - Atmosphere profile for Venus
- SiC - excellent high temperature semiconductor
- SiC electronic devices/sensors/MEMS demonstrated ~ 600°C, most in test probe station
 - Systematically validated packaging technology for T > 350°C not available
- 500°C device packaging technology needed
 - In situ device testing and commercialization
NEPP High Temperature SiC Packaging Project

- Collaborating efforts between NASA, industry, university
 - GRC: Material selection, package design and fabrication, testing, SiC device
 - JPL: NDE of die-attach
 - MSFC: Engine test
 - UTRC: Dynamic thermal environment tests, FEA evaluation
 - CWRU: Assistance in fabrication
High Temperature SiC Microsystem Packaging

- Electrical interconnection system
 - 500°C operable substrates
 - Ceramics: Al₂O₃ and AlN
 - 500°C operable electrical interconnection
 - Precious metal thick-film metallization
 - Au wire-bond
 - Conductive die-attach
 - Conductive, low electrical resistance
 - Thermal mechanical stability

- Mechanical system
 - Thermal mechanical reliability of die-attach
Test Facilities

- Testing systems for 500°C packaging materials/components tests
 - Electrical/electronic tests
 - Computerized
 - Simultaneous measurement of multi-parameters for multi-samples
 - Temperature programming
 - Mechanical/materials tests
 - Die shear ($T_R - 500^\circ C$) and die tensile (T_R)
 - Wire loop test (T_R, 500°C later this year)
Au Thick-film Based Interconnections

- Au based thick film metallization
 - Screen-printed thick-film wire/pads
 - Good adhesion to various ceramic substrates
 - Stable in corrosive ambience at high temperatures
 - Au thin wire-bond

- Printed thick-film wire/pad and Au wire-bond
- Tested at 500°C with electrical bias
Thick Film Based Interconnections

- 0.025 inch
- 3.45 inch
- 0.15 inch

~ 10 micron Au film on alumina
Thick Film Printed Wire
Thick Film Based Interconnections

Unit Circuit
Packaging Technology for 500°C SiC Microsystems

Thick-Film Metallization Based Au Wirebond
Conductive Die-attach

- SiC test device
 - Backside: Ni/4H-SiC ohmic contact after annealing at high temperature in Ar
 - Front-side: Au/Ti/4H-SiC \textit{rectifying} contact
- Au thick-film used as conductive attaching material
 - Two steps process allowing low curing temperature
- AlN substrate: high thermal conductivity and a CTE matches SiC
Optimized Die-Attach Process

- Thick film suggested be cured at 850°C
 - Best bonding to ceramic substrates
- 850°C may not be comfortable to die
- Optimize thick-film process for die-attach
- Scanning Electron Microscopy (SEM) and Auger Electron Spectroscopy (AES) were used to study the thick film surfaces cured at various temperatures
Conductive Die-attach Structure

Diagram showing a conductive die-attach structure with layers labeled as Au, Ti, Ni, SiC, and a ceramic substrate.
Two-Step Thick Film Process

- AES results indicate
 - High curing temperature (~ 850°C) preferred for binder migration to Au/ceramic interface
- SEM results indicate
 - Coherent thick film formation at ≥ 600°C
- Best adhesion and low temperature exposure to die
 - First screen-printed layer cured at 850°C
 - Die attached at 600°C with minimal amount of thick film materials
I-V Curve of an Attached SiC Diode at 500°C

T=500°C
t=1000 hours
In Air
Dynamic Resistance of Attached SiC Diode

![Graph showing dynamic resistance over test time at 500°C](image)
Test Results

- Attached SiC test chip
 - Diode I-V curves characterized at both T_R and 500°C
 - Dynamic resistance of I-V curves indicated die-attach resistance less than $3.5 \times 10^{-2} \, \Omega \, \text{cm}^2$ at T_R and 500°C tested for over 1000 hours
 - Sufficient shear strength measured at T_R
- Thick-film based interconnections validated at 500°C
 - Thick film printed wires stable at T_R - 500°C, with/without 50mA DC, for ~ 10000 hours.
 - Thick film metallization based wire bond stable at T_R - 500°C, with/without 50 mA DC, for ~ 10000 hours.
500°C Chip Level Package

- AlN and Al$_2$O$_3$ substrates
- Au thick-film metallization based wire-bond
- Au thick-film based low resistance conductive SiC die – attach scheme
- T_R - 500°C operable
- Tested in oxidizing environment
- Basic elements electrically tested at T_R - 500°C for ~10000 hours
- Packaging HT SiC sensors and circuits
Packaging Technology for 500°C SiC Microsystems

High Temperature Chip Level Package

Al$_2$O$_3$ based

AlN based
Summary

- AlN and 96% Al$_2$O$_3$ selected as substrates
- Au thick-film based interconnections validated at T_R and 500°C for \sim10000 hours with/without DC bias
- Au thick-film based conductive SiC die-attach scheme evaluated for 500°C operation
- Attached SiC diode electrically tested at 500°C for >1000 hours in oxidizing environment
 - The upper limit of die-attach resistance $< 3.5 \times 10^{-2} \Omega\text{-cm}^2$ at both T_R and 500°C
High Temperature MEMS Packaging

- Wide operation temperature range
 - $T_R - 500^\circ$C
- MEMS devices are sensitive to thermal mechanical stress
 - Device mechanical operation
 - CTE mismatch of die-attach materials
- Non-electrical interactions between the device and environment
 - Chemical, mechanical, magnetic, optical
- Thermal mechanical optimization of die-attach is critical to the reliability of packaged devices
Acknowledgements

- 2nd NEPP Annual Conference Committee
- Thick-film test samples fabricated in Case Western Reserve University
- Jih-Fen Lei and Lawrence G. Matus at GRC
- The technical support team at GRC
- Phillip J. Zulueta and David Mih at JPL
- High temperature SiC device packaging efforts at GRC are currently supported by NEPP and GMI