Characterization of Single-Event Transients in the LM119 Voltage Comparator

S. Buchner, Radiation Effects and Analysis Group NASA/GSFC
D. McMorrow, Naval Research Laboratory
R. Pease, RLP Research,
M. Maher, National Semiconductor,
R. Koga, Aerospace Corp
A. Sternberg and L. Massengill, Vanderbilt University

• NASA Electronic Parts and Packaging (NEPP) Program’s Electronic Radiation Characterization (ERC) Project
• DTRA RHM

SEE Symposium, Los Angeles, CA
4/24/02
04/24/02 - presented by Stephen Buchner
Outline

• Introduction
• Comparison of Pulsed-Laser Data, Modeling and Heavy-Ion Data
 – Dependence on Differential Input Voltage
 – Negative vs Positive differential voltages
• Conclusions
SETs in Linear Circuits

• SETs are momentary disturbances in the output voltage following an ion strike to a sensitive node in a circuit.

• SETs have been observed in
 – Voltage comparators (LM111, LM119, LM139)
 – Operational amplifiers (LM124)
 – Hybrids such as DC to DC Converters (2812)
SETs in Linear Circuits

- Depend on Operating Conditions:
 - Power supply
 - Output load
 - Input voltages

- SET Characteristics:
 - Amplitude
 - Width
 - Threshold

\[\begin{align*}
V_{\text{in}(+)} & \quad \text{LM119} \\
V_{\text{in}(-)} & \quad V_{\text{dd}} \\
& \quad V_{\text{ss}} \\
\end{align*} \]
LM119 Heavy Ion Data

- Testing under limited set of conditions - results may not be applicable to another application

\[V_{dd}=+15V, \ V_{ss}=-15V \]

Koga et al. 1997
Characterization Approach

To minimize costs of characterizing SET sensitivity of linear circuits, use a canonical set of data:

- heavy-ion tests (Cross-section vs LET and transients waveforms)
- modeling (device and circuit simulator programs)
- ion microprobe (focused beam on known locations)
- pulsed laser (focused beam of light)
LM119 Circuit Diagram

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
LM119 Photomicrograph

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
SET Sensitive Region for Q6

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
SET Sensitive Region for Q10

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
Pulsed-Laser Induced Transients

Amplitude (V)

Time (s)

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
Pulsed-Laser Induced Transients
Comparison of Transistor Sensitivity to SEE from Pulsed Laser Light and Modeling

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Delta V > 0</th>
<th>Delta V < 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laser</td>
<td>Modeling</td>
</tr>
<tr>
<td>Q1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Q5</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Q6</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q7</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Q8</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Q9</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q10</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q11</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q12</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Q13</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Q14</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q15</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q16</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q17</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q18</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Q19</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Q20</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q21</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Q22</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Pulsed Laser Results

<table>
<thead>
<tr>
<th>Transistor</th>
<th>DeltaV=+60mV</th>
<th>DeltaV=-60mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>Q3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>Q11</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Q12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Q15</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Q16</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Q17</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Q18</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Q19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q20</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Heavy Ion Results

LM119

Cross Section (cm²)

LET (MeV.cm²/mg)

Vdd=5V
Vss=-5V
R=1.7 K

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
Pulsed Laser Results

Differential Input Voltage (V) vs. SET Amplitude (V)

- Circuit Simulation
- Pulsed Laser Data with Small Qdep
- Pulsed Laser Data with Large Qdep
Pulsed Laser Results

![Graph showing the relationship between SET Amplitude (V) and Differential Input Voltage (V).]
Heavy Ion Results

LET (MeV.cm²/mg)

Cross-Section (cm²)

Vdd = 5V, $V = 4.5V$

Vdd = 5V, $V = 0.12V$

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
Heavy Ion Results

LM119

Cross Section (cm2)

LET (MeV.cm2/mg)

Vdd=5V
Vss=-5V
R=1.7 K?

SEE Symposium, Los Angeles, CA
04/24/02 - presented by Stephen Buchner
Conclusions

- There is a wide parameter space for SETs in linear circuits.
- Avoid heavy-ion testing for each condition by doing modeling.
- SPICE modeling requires a significant effort particularly if transistor parameters are not known.
- SET data from a pulsed laser can be used to validate SPICE models in a feedback mode.
- Ion microprobe is a valuable aid because of limitations of laser, i.e. metal coverage and penetration depth of the light.
- Pulsed laser can be used to check unique conditions rapidly.