Aeroflex Solutions for Stacked Memory Packaging
Increasing Density while Decreasing Area

Authors:
Ronald Lake
Tim Meade, Sean Thorne, Clark Kenyon, Richard Jadomski

www.aeroflex.com/memories

Military and Aerospace Programmable Logic Devices - MAPLD
September 2009
Abstract

The aerospace industries continuous appetite for greater memory density in smaller footprint packages has driven Aeroflex Colorado Springs to develop new techniques for memory design and stacked die packaging. Memory requirements now exceed the device density and board area available using single die packaging, even as shrinking process geometries allow for monolithic die density of 16 – 20Mb. Stacking multiple die in a single package provides dramatic improvements in memory density per square mm of board space, while maintaining high performance. However, die stacking in multi-cavity packages introduces a whole new series of thermal and mechanical issues. In particular, due to increased thermal resistance, high junction temperatures can be created in stacked die which increases their leakage current and power dissipation while decreasing their reliable operating life.

To address these concerns, Aeroflex has modified both the electrical and mechanical procedures for the management of stacked die in Aeroflex memory products. Improvements in the attachment interfaces between die, along with package design for thermal conductivity serves to optimize the thermally conductive path from the stacked die through the package out to the ambient environment.

This paper will focus on the specifics of the power and thermal management techniques used by Aeroflex in the development of their stacked die memory products. Discussion will include overall package design, bonding interface materials and elimination of voids, thermal conductivity. A review of current and future Aeroflex memory products will define a roadmap from monolithic, single cavity design of 16M SRAMs up to multi-cavity, stacked die providing 160M of SRAM density.
The Packaging Challenge…

- A successful solution balances performance, density, and thermal aspects of the product in a manufacturable process
Memory Packaging for Performance

- Thin Bonding Interfaces
- Thin Ceramic Substrate
- Large Seal Ring for Seam Sealing
- Side Brazed Lead-Frame
- Dedicated Power Planes and Extensive Power Pins
- Optimized Bond Finger to Lead Frame Routing
 - Low Capacitance
 - Low Inductance
 - Controlled Impedance
 - Matched Trace Lengths
- Optimized Bond Shelf Width for Memory Stacking and Connectivity
Stacking achieves high density in minimal board space while reducing total cost.
The Power of Temperature Reduction

180nm CMOS QIDD vs. Temperature

- Slope = 11.9 uA/°C
- Slope = 70.4 uA/°C
- Slope = 227.3 uA/°C
Thermal Resistance and Heat Flow

- Main heat flow is through ceramic substrate and out bottom lid through the PCB
- Conductive epoxies allow for secondary flow through top and bottom lids
Manufacturing Process Support of Theta-JC

- **Interface Management Consists of:**
 - **Quantity of interfaces**
 - Epoxy deposition requires spacers with epoxy adhered to each side
 - Current process optimizes epoxy deposition and curing flow
 - Epoxy preforms eliminate spacers
 - **Quality of interfaces**
 - Thick interfaces increase thermal resistance
 - Current process dispenses thin, uniform epoxy
 - Epoxy preforms reduce thickness and improve thermal conductivity
 - **Selection of interface materials**
 - Epoxy preform vs epoxy/silicon/epoxy deposition
 - **Area coverage of interface**
 - Elimination of Voids
 - **Environmental screens and testing used to eliminate substandard device**
The Impact of Interface Voids

- 160 Mb (Dual Cavity MCM, 4-Die Stacked per Cavity)
 - Power Density of 1W distributed over 0.566” x 0.566” die surface

- 50% voiding increases Θ_{JC} 160% over identical stack w/ 0% voiding

- Theta-JC with 0% voiding:
 - 11.9 °C / W

- Theta-JC with 50% voiding on each bond interface (worst case = 7 I/Fs)
 - 19.3 °C / W
The “Cure” to “Dispensing” with Voids

- Dispense parameters and die placement are important factors in preventing voids
- A proper cure profile is critical to minimize void expansion in the die attach material
- Example of high voiding
 - Caused by improper cure profile and poor dispense
- Example of ideal bond interface

Because of the large Theta-JC, an accelerated B/I will screen out excessive voiding

Not a void, but an artifact from the ink dot on test die
Aeroflex Qualified Memory Solutions

Aeroflex Colorado Springs has been providing memories for over 20 years
- Memory solutions – 50 krads(Si) to 300 krads(Si)
- QCOTS using commercial die to 50 krad(Si)

Offered as 4-, 8- and 16Mbit options
- 128K x 32, 512K x 8, 512K x 32 architecture

In development 32/64/128M and 40/80/160M MCMs
- 1M, 2M, 4M x 32 and 1M, 2M, 4M x 39

3.3V I/O, 1.8V core Dual Source

3.3V and 5V Single Source
Aeroflex Qualified Memory Solutions

SRAMs

<table>
<thead>
<tr>
<th>Product</th>
<th>Density Organization</th>
<th>Access Time Read/Write</th>
<th>Dual Supply Voltage</th>
<th>Max Power</th>
<th>Package</th>
<th>Total-dose Qualification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT8R128K32</td>
<td>4Meg 128K x 32</td>
<td>15ns</td>
<td>3.3 V I/O 1.8V Core</td>
<td>205mW</td>
<td>68-lead CQFP</td>
<td>300 krad(Si)</td>
<td>QML-Q, V 12T Cell</td>
</tr>
<tr>
<td>UT8R512K8</td>
<td>4Meg 512K x 8</td>
<td>15ns</td>
<td>3.3 V I/O 1.8V Core</td>
<td>72mW</td>
<td>36-lead CFP</td>
<td>300 krad(Si)</td>
<td>QML-Q, V 12T Cell</td>
</tr>
<tr>
<td>UT8CR512K32</td>
<td>16Meg 512K x 32</td>
<td>17ns</td>
<td>3.3 V I/O 1.8V Core</td>
<td>272mW</td>
<td>68-lead CQFP</td>
<td>300 krad(Si)</td>
<td>QML-Q, V MCM, 12T Cell, Dual Cavity</td>
</tr>
<tr>
<td>UT8ER512K32 (Master or Slave)</td>
<td>16Meg 512K x 32</td>
<td>20ns read 10ns write</td>
<td>3.3 V I/O 1.8V Core</td>
<td>588mW</td>
<td>68-lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML-Q, V On-Chip EDAC, Monolithic</td>
</tr>
</tbody>
</table>
Aeroflex Qualified Memory Solutions

SRAMs

<table>
<thead>
<tr>
<th>Product</th>
<th>Density Organization</th>
<th>Access Time Read/Write</th>
<th>Supply Voltage</th>
<th>Max Power</th>
<th>Package</th>
<th>Total-dose</th>
<th>Qualification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT8Q512E</td>
<td>4Meg 512K x 8</td>
<td>20ns</td>
<td>3.3V</td>
<td>270mW</td>
<td>36 – lead CFP</td>
<td>50 krad(Si)</td>
<td>QML-Q, V</td>
<td></td>
</tr>
<tr>
<td>UT8Q512K32E</td>
<td>16Meg 512K x 32</td>
<td>25ns</td>
<td>3.3V</td>
<td>252mW</td>
<td>68 –lead CQFP</td>
<td>50 krad(Si)</td>
<td>QML-Q, QML-V pending</td>
<td>MCM, dual cavity, 2 die stack</td>
</tr>
<tr>
<td>UT9Q512E</td>
<td>4Meg 512K x 8</td>
<td>20ns</td>
<td>5V</td>
<td>418mW</td>
<td>36 – lead CFP</td>
<td>50 krad(Si)</td>
<td>QML-Q, V</td>
<td></td>
</tr>
<tr>
<td>UT9Q512K32E</td>
<td>16Meg 512K x 32</td>
<td>25ns</td>
<td>5V</td>
<td>385mW</td>
<td>68 –lead CQFP</td>
<td>50 krad(Si)</td>
<td>QML-Q, QML-V pending</td>
<td>MCM, dual cavity, 2 die stack</td>
</tr>
</tbody>
</table>
Stacked Die Package Development

- UT9Q512K32E dual cavity, 2 die stack
- Uses epoxy deposition with spacer
- QML-Q complete, QML-V pending
Aeroflex Qualified Memory Solutions

SRAMs

<table>
<thead>
<tr>
<th>Product</th>
<th>Density Organization</th>
<th>Access Time Read/Write</th>
<th>Dual Supply Voltage</th>
<th>Max Power</th>
<th>Package</th>
<th>Total-dose</th>
<th>Qualification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT8ER1M32</td>
<td>32Meg 1M x 32</td>
<td>20ns read 10ns write</td>
<td>3.3V I/O 1.8V Core</td>
<td>540mW</td>
<td>132 – lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML Q409</td>
<td>On-Chip EDAC, MCM, dual cavity</td>
</tr>
<tr>
<td>(Master or Slave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT8ER2M32</td>
<td>64Meg 2M x 32</td>
<td>20ns read 10ns write</td>
<td>3.3V I/O 1.8V Core</td>
<td>650mW</td>
<td>132 – lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML Q409</td>
<td>On-Chip EDAC, MCM, dual cavity, 2 die stack</td>
</tr>
<tr>
<td>(Master or Slave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT8ER4M32</td>
<td>128Meg 4M x 32</td>
<td>20ns read 10ns write</td>
<td>3.3V I/O 1.8V Core</td>
<td>870mW</td>
<td>132 – lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML Q409</td>
<td>On-Chip EDAC, MCM, dual cavity, 4 die stack</td>
</tr>
<tr>
<td>(Master or Slave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT8R1M39</td>
<td>40Meg 1M x 39</td>
<td>20ns read 10ns write</td>
<td>3.3V I/O 1.8V Core</td>
<td>540mW</td>
<td>132 – lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML Q409</td>
<td>MCM, dual cavity</td>
</tr>
<tr>
<td>UT8R2M39</td>
<td>80Meg 2M x 39</td>
<td>20ns read 10ns write</td>
<td>3.3V I/O 1.8V Core</td>
<td>650mW</td>
<td>132 – lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML Q409</td>
<td>MCM, dual cavity, 2 die stack</td>
</tr>
<tr>
<td>UT8R4M39</td>
<td>160Meg 4M x 39</td>
<td>20ns read 10ns write</td>
<td>3.3V I/O 1.8V Core</td>
<td>870mW</td>
<td>132 – lead CQFP</td>
<td>100 krad(Si)</td>
<td>QML Q409</td>
<td>MCM, dual cavity, 4 die stack</td>
</tr>
</tbody>
</table>
Stacked Die Package Development

- UT8ER4M32 dual cavity, 4 die stack
- Current process uses epoxy deposition with spacer
- Epoxy preforms under evaluation
- QML Qualification Q409
Stacking memory die allows for the highest density solution while maintaining single die performance.

Aeroflex implemented manufacturing and assembly flows to address thermal and mechanical issues inherent with stacked die:
- Thin bonding interfaces
- Thin ceramic substrates
- Optimized bond shelf width for connectivity
- Optimized bond finger routing to minimize capacitance and inductance
- Dedicated power planes with extensive power pins

Aeroflex minimizes Θ_{JC} for stacked die packaging:
- Use of multiple cavities
- Quality and thickness of interfaces between die
- Optimum materials and curing
- Elimination of voids in the die attach process

Aeroflex provides a family of stacked memory die solutions for aerospace applications.