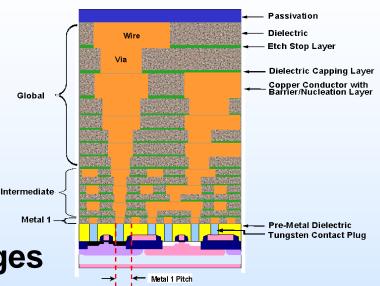
NEPP Electronic Technology Workshop June 22-24, 2010

National Aeronautics and Space Administration

Packaging And Embedded Electronics For The Next Generation

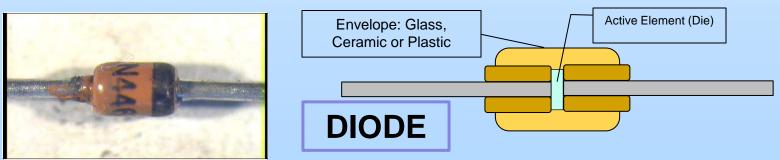
Michael J. Sampson, NASA GSFC


Co-Manager NASA Electronic Parts and Packaging Program Michael.j.sampson@nasa.gov

http://nepp.nasa.gov

Outline

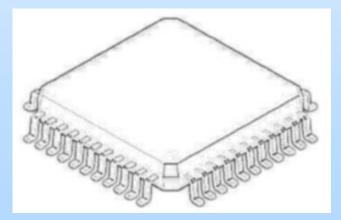
- What is Electronic Packaging?
- Why Package Electronic Parts?
- Evolution of Packaging
- General Packaging Discussion
- Advanced non–hermetic packages
- Discussion of Hermeticity
- The Class Y Concept and Possible Extensions
- Embedded Technologies
- NEPP Activities


What is Electronic Packaging?

- It is not cardboard boxes and bubble wrap
- Electronic "Packaging" can have two basic meanings:
 - First (Part) Level: The "envelope" of protection surrounding an active electronic element, and also the termination system to connect it to the outside world
 - Second and Higher Levels: The assembly of parts to boards, boards to slices, slices to boxes, boxes to systems, instruments and spacecraft
- This discussion will cover examples of both

Why Package Electronic Parts?

- To protect the active element against:
 - Handling
 - Shock and vibration
 - Contamination
 - Light penetration or emission
- To provide a suitable system to make connection between the element and the printed wiring board
- To prevent conductive parts of the element from coming in contact with other conductive surfaces, unless intended

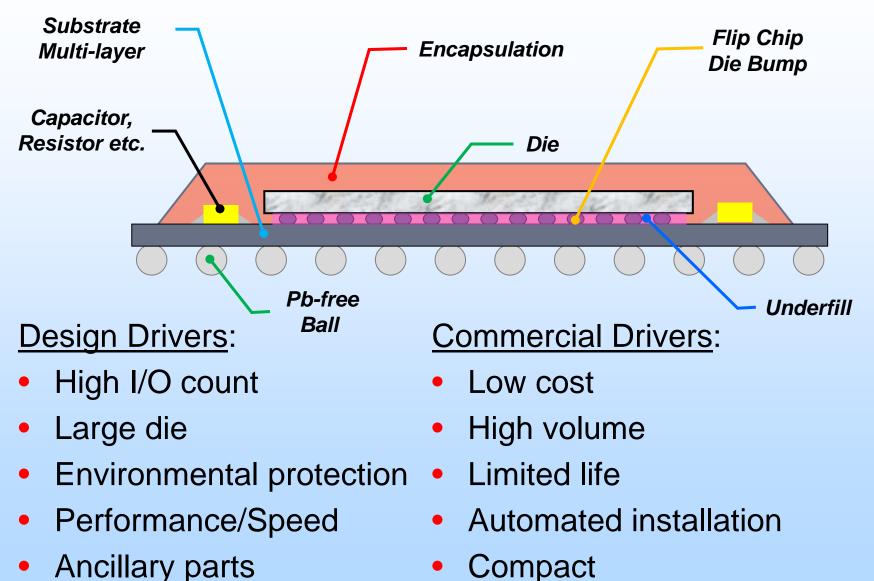

Package Options – Hermetic?

- Once, hermetic packages were the preferred option
- Now, few hermetic options for latest package technologies
 - Development of new hermetic options unattractive
 - Very high Non Recurring Expenses
 - Very high technical difficulty
 - Very low volume
 - Demanding customers
- Market is driven by consumer products
 - Low cost
 - High volume
 - Rapid turnover = Non hermetic, mostly plastic
 - "Green"
 - Minimized size _

NASA

The "General" Package

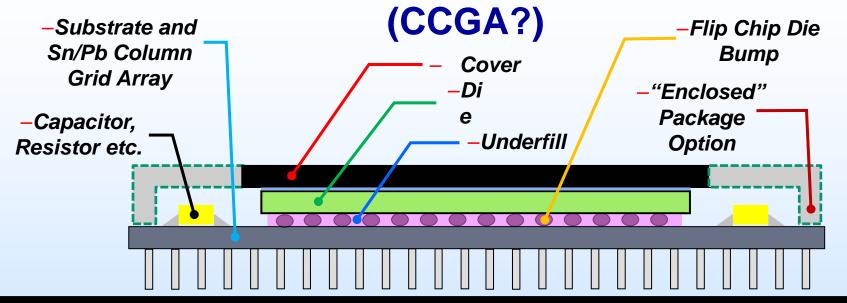
- Typically, packages consist of the same basic features but achieve them in many ways:
 - Functional elements active die, passives etc.
 - Interconnects between elements (2 or more elements)
 - A substrate
 - Interconnects to the external I/O of the package
 - A protective package
 - Interconnects to the next higher level of assembly


Continuous Packaging Challenges

- I/O s, increasing number, decreasing pitch
- Heat Dissipation, (especially in space)
- Manufacturability
- Materials
- Mechanical
- Installation
- Testability
- Inspectability
- RoHS (Pb-free)
- (Space Environment)

-Lunar Reconnaissance Orbiter (LRO), Built at GSFC, Launched with LCROSS, June 18,2009

Commercial, Non-hermetic Package (PBGA)



Space Challenges for Complex Non-hermetic Packages

- Vacuum:
 - Outgassing, offgassing, property deterioration
- Foreign Object Debris (FOD)
 - From the package threat to the system, or a threat to the package
- Shock and vibration
 - During launch, deployments and operation
- Thermal cycling
 - Usually small range; high number of cycles in Low Earth Orbit (LEO)
- Thermal management
 - Only conduction and radiation transfer heat
- Thousands of interconnects
 - Opportunities for opens, intermittent possibly latent
- Low volume assembly
 - Limited automation, lots of rework
- Long life
 - Costs for space are high, make the most of the investment
- Novel hardware
 - Lots of "one offs"
- Rigorous test and inspection
 - To try to find the latent threats to reliability

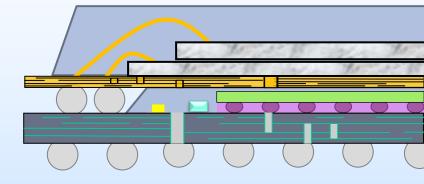
ONE STRIKE AND YOU'RE OUT!

Non-hermetic Package, With"Space" Features

Space Challenge	Some Defenses
Vacuum	Low out/off-gassing materials. Ceramics vs polymers.
Shock and vibration	Compliant / robust interconnects - wire bonds, solder balls, columns, conductive polymer
Thermal cycling	Compliant/robust interconnects, matched thermal expansion coefficients
Thermal management	Heat spreader in the lid and/or substrate, thermally conductive materials
Thousands of interconnects	Process control, planarity, solderability, substrate design
Low volume assembly	Remains a challenge
Long life	Good design, materials, parts and process control
Novel hardware	Test, test
Rigorous test and inspection	Testability and inspectability will always be challenges 10

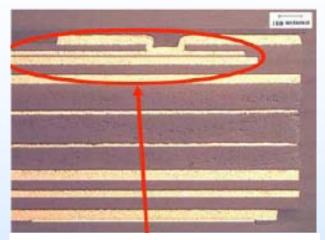
Hermeticity

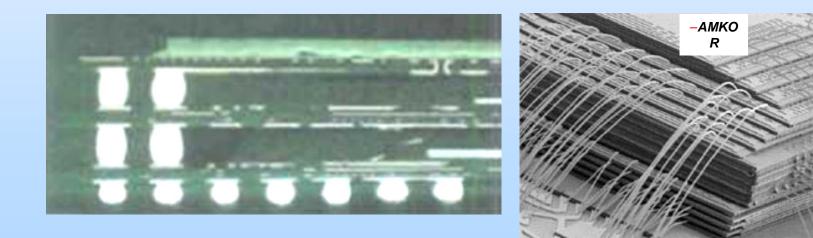
- NASA prefers hermetic packages for critical applications
- Hermeticity is measureable, assuring package integrity
- Only 3 tests provide assurance for hermetic package integrity:
 - Hermeticity nothing bad can get in
 - Residual or Internal gas analysis nothing bad is inside
 - Particle Impact Noise Detection no FOD inside
- NON-HERMETIC PACKAGE INTEGRITY IS HARD TO ASSESS - NO <u>3 BASIC TESTS</u>
- Non-hermetic packages expose materials' interfaces that are locked away in hermetic ones


But What is Hermetic?

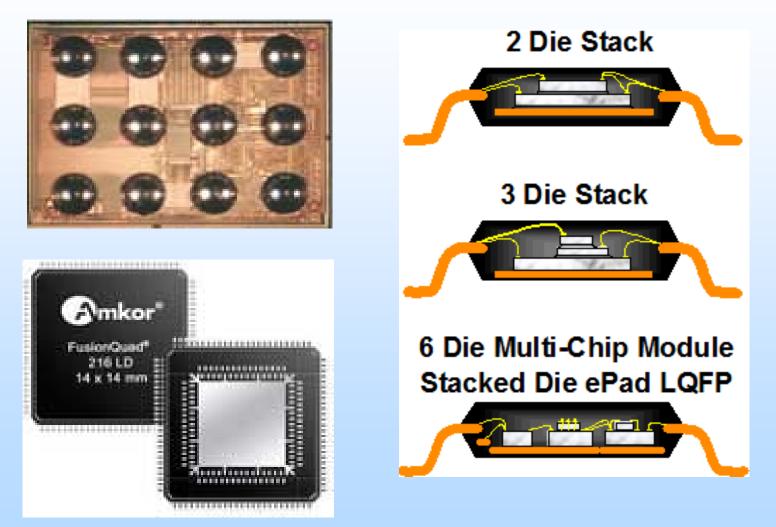
- Per MIL-PRF-38534 Appx E and 38535 Appx A, hermetic packages must consist of metals, ceramic and glass in combinations ONLY, no polymerics
- Meets aggressive leak rate test limits
 - Verifies low rate of gas escape/ atmospheric interchange
 - Even so, small volume packages meeting "tight limits" theoretically exchange their atmosphere very quickly:
 - 0.001 cc, exchanges 93% in 1 month at 5X10⁻⁸ atmosphere/cc/sec!
 - 1.0cc, 96% in 10 years at 1 X 10⁻⁸
 - Even large packages with quite small leaks can surprise
 - 10 cc, 96% in 1 year at 1 X 10⁻⁶ !
- For applications in space vacuum why care?
 - Risk for contamination on the ground
 - Risk for outgassing in vacuum

Non-hermetic Package Variations


- Current and future package options mix and match elements in almost infinite combinations
- Elements include:
 - Wire bonds
 - Ball interconnects
 - Solder joints
 - Conductive epoxies
 - Vias
 - Multi-layer substrates
 - Multiple chips, active and passive (hybrid?)
 - Stacking of components
 - Embedded actives and passives
 - Polymers
 - Ceramics
 - Enclosures/encapsulants
 - Thermal control features



Some Large Device Package Options



Embedded Capacitor

Some Large Device Package Options

From Amkor's Website http://www.amkor.com/go/packaging

More Complexity is Coming

- Stacking of chips to provide a third dimension of density and complexity
 - Stacking of Field Programmable Gate Arrays (FPGAs) appears imminent
 - Stacking of memory die is "old hat"
 - Through-silicon vias instead of bond wires
 - Maintain speed and allow lots of I/Os
 - High volumetric efficiency
 - Significant manufacturability challenges
 - Material and dimensional interfaces
 - Testability
 - Significant usability challenges
 - Design complexity
 - Handling, testing, rework/replace, risk management
 - Cost versus benefit trades

MIL-PRF-38535, Class Y

- Y Not Non-hermetic for Space?
- Proposed new class for M38535, monolithic microcircuits
- Class Y will be for Space level non-hermetic
- Class V will be defined as hermetic only
- Addition to Appendix B, "Space Application"
- Package-specific "package integrity" test requirements proposed by manufacturer, approved by DSCC and government space
- The Package Integrity Test Plan must address:
 - Potential materials degradation
 - Interconnect reliability
 - Thermal management
 - Resistance to processing stresses
 - Thermo-mechanical stresses
- G12 Task Group established 01/13/01

Level 2 Packaging Evolution

n

С

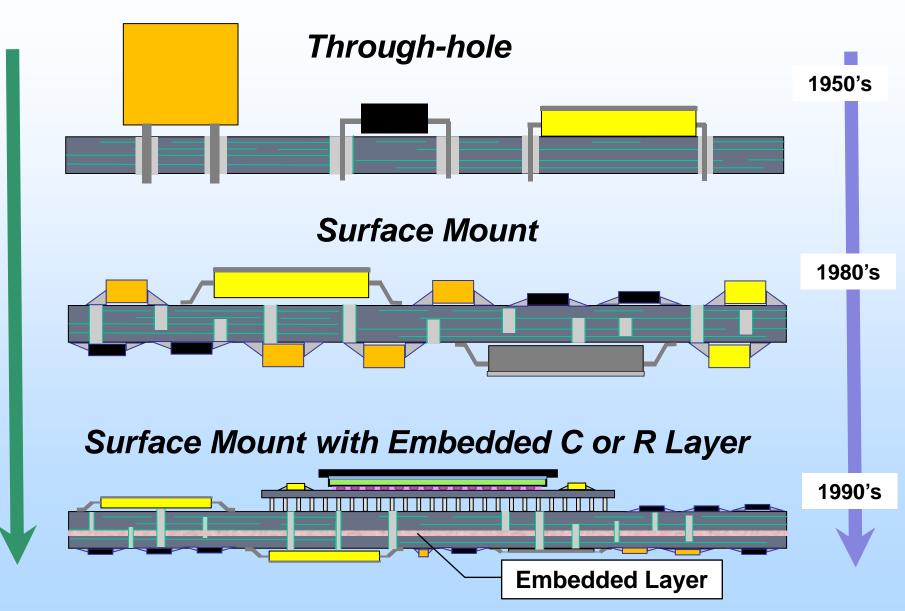
r

e

a

S

n


g

D

e

n

S

Embedded Technologies + and -

- Advantages:
 - Increases volumetric efficiency reduces parts count on Printed Wiring Board (PWB) surface
 - Enhances performance speed
 - Increases reliability (reduces number of solder joints)
 - Distributes heat more evenly
 - Aids high volume production and reduces cost

Challenges:

- Design/layout introduces constraints, complicates re-spin
- PWB quality more difficult PWB fabrication
- PWB robustness material mismatches
- Testing can't access individual parts
- Rework and repair problems buried inside PWB
- "One-offs"

NEPP Activities

- Continuous surveillance of emerging trends
- Have evaluated embedded passives
 - Partnering with Navy Crane
 - Quite mature technologies, bulk capacitive layer
 - Works but "space" low quantities a challenge
- Have tried to evaluate a novel, flexible, embedded active-die technology
 - Considerable promise
 - Beset by technical problems, particularly die thinning
 - Consider revisiting as technology improves
- Initial evaluations of technical readiness of die thinning, through-hole vias and advance die stacking are needed
- Continue development of Class Y concept

http://nepp.nasa.gov