

Using SiGe Technology in Extreme Environments

John D. Cressler

Ken Byers Professor School of Electrical and Computer Engineering Georgia Tech, Atlanta, GA 30332 USA cressler@ece.gatech.edu

NASA NEPP Electronics Technology Workshop 2010 NASA-GSFC, Greenbelt, MD 6/24/10

This work was supported by NASA ETDP, NASA-NEPP, DTRA, AFOSR MURI, and JPL

John D. Cressler, 6/10

1

Outline

- Some Reminders on SiGe
- Using SiGe in a Radiation Environment
- Understanding and Mitigating SEE
- Operation at Cryogenic Temperatures
- Some Thoughts on NASA Apps of SiGe
- Summary

John D. Cressler, 6/10

Strain Engineering in Si

M

Strained Si CMOS

SiGe HBTs

All Are:
Strain-Enhanced
Si-based Transistors

Close Cousins!

SiGe Strained Layer Epi

Technology

The Bright Idea!

Practice Bandgap Engineering ... but do it in Silicon!

When You Do It Right ...

Seamless Integration of SiGe into Si

No Evidence of Deposition!

The SiGe HBT

the Decree of a O' D IT

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection (β 1)
- field from graded base bandgap decreases base transit time (f_T 1)
- base bandgap grading produces higher Early voltage (V_A 1)
- decouples base profile from performance metrics

$$\left. \frac{\beta_{SiGe}}{\beta_{si}} \right|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma} \, \widetilde{\eta} \, \Delta E_{g,Ge}(grade) / kT \, e^{\Delta E_{g,Ge}(0)/kT}}{1 - e^{-\Delta E_{g,Ge}(grade)/kT}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\widetilde{\eta}} \frac{kT}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{kT}{\Delta E_{g,Ge}(grade)} \left[1 - e^{-\Delta E_{g,Ge}(grade)/kT} \right] \right\}$$

$$\left. \frac{V_{A,SiGe}}{V_{A,Si}} \right|_{V_{BE}} \equiv \Theta \left[e^{\Delta E_{g,Ge}(grade)/kT} \left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right] \right]$$

SiGe Success Story

- $\underline{\underline{\mathbb{M}}}$
- SiGe = SiGe HBT + Si CMOS for Highly Integrated Solutions
- Rapid Generational Evolution (full SiGe BiCMOS)
- Significant In-roads in High-speed Communications ICs

SiGe base

Si collector

SiGe = III-V Speed + Si Manufacturing

John D. Cressler, 6/10

Win-Win!

SiGe Performance Limits

- Half-TeraHertz SiGe HBTs Are Clearly Possible (at modest lith)
- Both f_T and f_{max} above 500 GHz at Cryo-T (scaling knob)
- Useful BV @ 500 GHz $(BV_{CEO} > 1.5 \text{ V} + BV_{CBO} > 5.5 \text{ V})$

New SiGe Opportunities

- SiGe for Radar Systems
 - single chip T/R for phased arrays, space-based radar (2-10 GHz & up)
 - automotive radar (24, 77 GHz)
- SiGe for Millimeter-wave Communications
 - Gb/s short range wireless links (60, 94 GHz)
 - cognitive radio / frequency-agile WLAN / 100 Gb Ethernet
- SiGe for THz Sensing, Imaging, and Communications
 - imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)
- SiGe for Analog Applications
 - the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)
- SiGe for Extreme Environment Electronics
 - extreme temperatures (4K to 300C) + radiation (e.g., space systems)
- SiGe for Electronic Warfare
 - extreme wideband transceivers (20 MHz 20 GHz)
 - dynamic range enhanced receivers

New SiGe Opportunities

- SiGe for Radar Systems
 - single chip T/R for phased arrays, space-based radar (2-10 GHz & up)
 - automotive radar (24, 77 GHz)
- SiGe for Millimeter-wave Communications
 - Gb/s short range wireless links (60, 94 GHz)
 - cognitive radio / frequency-agile WLAN / 100 Gb Ethernet
- SiGe for THz Sensing, Imaging, and Communications
 - imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)
- SiGe for Analog Applications
 - the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)
- SiGe for Extreme Environment Electronics
 - extreme temperatures (4K to 300C) + radiation (e.g., space systems)
- SiGe for Electronic Warfare
 - extreme wideband transceivers (20 MHz 20 GHz)
 - dynamic range enhanced receivers

SiGe For Space Systems

- The Holy Grail of the Space Community
 - IC technology space-qualified without additional hardening
 - high integration levels to support SoC / SiP (low cost)

Key Question:
Can SiGe Play a
Major Role in
Space Systems?

- Total Ionizing Dose (TID) ionizing radiation
 - 100-500 krad(Si) over 10 years for orbit (300 rad(Si) is lethal to humans!)
- Single Event "Stuff" heavy ions
 - measure data upset cross-section (σ) vs. Linear Energy Transfer (LET)
 - σ = # errors / particle fluence (ions/cm²): LET = charge deposition (pC/ μ m)
 - Goals: low cross-section + high LET threshold

SiGe HBTs at NSREC

Total SiGe HBT Papers @ NSREC:

1995-2010 = 74

Radiation Experiments

(1995-2010)

SiGe Technology Generations (Devices + Circuits!):

- 1st Generation (50 GHz HBT + 0.35 um CMOS)
- 2rd Generation (100 GHz HBT + 180 nm CMOS)
- 3rd Generation (200 GHz HBT + 130 nm CMOS)
- 4th Generation (pre-production 300 GHz HBT)
- many different companies (npn + pnp; bulk + SOI)

TID Radiation Sources:

- gamma ray (>100 Mrad + LDR)
- proton (1-24,000 MeV + 77K)
- x-ray
- neutron
- prompt dose (krad / nsec)

Single Event Effects:

- broad beam heavy ion
- ion microbeam
- laser (top-side + TPA)

John D. Cressler, 6/10

Total-Dose Response

- Multi-Mrad Total Dose Hardness (with no intentional hardening!)
 - ionization + displacement damage very minimal over T; no ELDRS!
- Radiation Hardness Due to Epitaxial Base Structure (not Ge)
 - thin emitter-base spacer + heavily doped extrinsic base + very thin base

TID Effects: Summary

SiGe HBTs are Inherently Tolerant to TID ... as Fabricated!

- Minimal damage to <u>devices + circuits</u> (all sources; no ELDRS)
- Typically multi-Mrad capability, <u>as built</u>
- TID-induced damage improves with SiGe technology scaling
- No ac performance degradation across all SiGe generations
- SiGe HBTs much less sensitive to bias effects than CMOS
- SiGe HBTs function after 100+ Mrad exposure!
- Reduced TID damage at cryogenic temperatures

Lots of Interesting Physics ... The Story is NOT Over ...

Outline

- Some Reminders on SiGe
- Using SiGe in a Radiation Environment
- Understanding and Mitigating SEE
- Operation at Cryogenic Temperatures
- Some Thoughts on NASA Apps of SiGe
- Summary

John D. Cressler, 6/10

Single Event Effects

- low LET threshold + high saturated cross-section (bad news!)

SEU: TCAD to Circuits

SiGe RHBD Success!

- Reduce Tx-Tx Feedback Coupling Internal to the Latch
- Circuit Architecture Changes + Transistor Layout Changes

No SEU to LET's of 70!

Device-Level RHBD

- Reduced Deep-trench Area ⇒ Improved Cross-section
- Trench Area in CBE (RHBD) Device Reduced by 73%

$A_E = 0.12 \times 2.50 \ \mu m^2 \ (CBEBC)$

$A_E = 0.12 \times 0.52 \ \mu m^2 \ (CBE)$

RHBD SiGe HBT

Circuit-Level RHBD

- DI DFF: Limited Transistor-level Decoupling in Storage Cell
- GFC DFF: OR-gate Logic Correction and Load Diode Clamps

DI DFF

Master Stage of GFC DFF

Register-Level RHBD

- <u>DI TMR</u>: Triple Modular Redundancy in DI SR
- GFC TMR: Triple Modular Redundancy in GFC SR
- GFC-Hardened Clocks
- Voting Performed Using Parallel GFC/Unhardened Voters

TMR Block Diagram

Can We Eliminate TMR and Still SEE-Harden SiGe?

John D. Cressler, 6/10

New RHBD Approaches

Inverse-mode Cascode (IMC) SiGe HBT

SiGe HBT on Thick Film SOI

GFC latch + IMC + SOI = SEU hard?

Outline

- Some Reminders on SiGe
- Using SiGe in a Radiation Environment
- Understanding and Mitigating SEE
- Operation at Cryogenic Temperatures
- Some Thoughts on NASA Apps of SiGe
- Summary

John D. Cressler, 6/10

The Moon:

A Classic Extreme Environment!

Temperature Ranges:

- +120C to -180C (300C swings!)
- 28 day cycles

Radiation:

- 100 krad over 10 years
- single event upset (SEU)
- solar events

Many Different Circuit Needs:

- digital building blocks
- analog building blocks
- data conversion (ADC/DAC)
- RF communications
- power conditioning
- actuation and control
- switches
- sensors / sensor interfaces

Highly Mixed-Signal Flavor!

Rovers / Robotics

Requires Centralized "Warm Box"

SiGe HBTs for Cryo-T

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection (β1)
- field from graded base bandgap decreases base transit time (f_T 1)
- base bandgap grading produces higher Early voltage (V_A 1)

$$\left. \frac{\beta_{SiGe}}{\beta_{si}} \right|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma} \, \widetilde{\eta} \, \Delta E_{g,Ge}(grade) / \underline{kT} \, e^{\Delta E_{g,Ge}(0) / \underline{kT}}}{1 - e^{-\Delta E_{g,Ge}(grade) / \underline{kT}}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\widetilde{\eta}} \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left[1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}} \right] \right\}$$

$$\left. \frac{V_{A,SiGe}}{V_{A,Si}} \right|_{V_{RE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/kT} \left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right]$$

SiGe HBTs at Cryo-T

First-Generation SiGe HBT

Remote Electronics Unit

The X-33 Remote Health Unit, BAE Systems, circa 1998

The ETDP SiGe Remote Electronics Unit, 2010

REU in a package!

Specifications

- $5" \times 3" \times 6.75" = 101 \text{ in}^3$
- 11 kg
- 17 Watts
- -55°C to +125°C

Our SWAP Goals

- 1.5" x 1.5" x 0.5" = 1.1 in³ (100x)
- < 1 kg (10x)
- < 2 Watts (10x)

• <u>-180°C to +125°C, rad tolerant</u>

Supports Many Sensor Types:

Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

Use This SiGe REU as a Remote Vehicle Health Monitoring Node

SiGe REU Architecture

Major Advantages:

- Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
- Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
- Commonality (easily adapted from one system to the next)

MISSE-6,7 ISS Missions

SiGe Circuits!

Recent NASA photograph of MISSE-6 after deployment, taken by the Space Shuttle Crew

Cryogenic SiGe LNAs

$\underline{\underline{\mathbb{M}}}$

X-band LNA Operation at 15 K (Not Yet Optimized!)

- T_{eff} < 20 K (noise T)
- NF < 0.3 dB
- Gain > 20 dB
- *dc* power < 2 mW

35 30 25 NF = 0.3 dB!¥20 ₩ 15 10 8.5 9.5 10.5 10 Frequency (GHz)

Collaboration with S. Weinreb, Cal Tech

This SiGe LNA is Also Rad-Hard!

John D. Cressler, 6/10

Operation at Sub-1K!

- SiGe HBT Works Just Fine Down to 300 mK!
- SiGe Reference Circuit Also Works! (700 mK)

Collaboration with NASA-GSFC: S. Aslam, T. Stevenson, and B. Meloy

Outline

- Some Reminders on SiGe
- Using SiGe in a Radiation Environment
- Understanding and Mitigating SEE
- Operation at Cryogenic Temperatures
- Some Thoughts on NASA Apps of SiGe
- Summary

John D. Cressler, 6/10

Some Thoughts / Ideas

- We now know how to build robust, reliable, complex mixed-signal (analog, digital, RF) SiGe electronics to operate in Lunar/Martian/Europa/Titan/etc. environments
- We can provide <u>warm-box free</u> SiGe "electronic suites" for a wide class of instrument / sensor / control / comm needs that can provide <u>dramatic</u> reductions in SWAP

Complex on-Surface Electronics analog, sensors, digital, RF, power, etc.

- < 1.0 in² (small)
- < 100 g (light weight)
- < 1-2 W for SYSTEMS (low power)

Key Takeaway: Environmentally Invariant Electronics

Summary

SiGe HBT BiCMOS Technology

- combines III-V speed with Si manufacturing (win-win)
- many new apps (SiGe is a natural for space environments)

Using SiGe HBTs in Radiation Environments

- built-in total-dose hardness (multi-Mrad!)
- SEU is an issue to be reckoned with (fast digital = worst case)

SiGe Technology Can Provide Mission Designers With:

- environmentally-invariant electronic suites
- warm-box free operation
- dramatic reductions in SWAP
- improved reliability
- commonality of electronic systems

Acknowledgement

- Akil Sutton, Stan Phillips, Ryan Diestelhorst, Laleh Najafizadeh, Ted Wilcox, Marco Bellini, Kurt Moen, Aravind Appaswamy, Tushar Thrivikraman, and Tom Cheng (my Georgia Tech team)
- Guofu Niu and team (Auburn University)
- Robert Reed, Ron Schrimpf, and teams (Vanderbilt University)
- Paul Marshall, Marty Carts, Jonny Pellish, and Ken LaBel (NASA-GSFC)
- The NASA ETDP SiGe Team, including: Ben Blalock, Wayne Johnson, Alan Mantooth, Mohammad Mojarradi, Guofu Niu, Foster Dai, Pat McCluskey, Leora Peltz, Richard Berger, Ray Garbos (and teams)
- Lew Cohn and James Fee (DTRA)
- Barb Randall and team (Mayo Foundation)
- George Vizkelethy and Paul Dodd (Sandia)
- Dale McMorrow (NRL)
- Marek Turowski and team (CFDRC)
- The SiGe Teams at IBM, Jazz, IHP, TI, National, and ST Micro

and many others ...