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Strain Engineering in Si

Strained Si CMOS SiGe HBTs

All Are:
Strain-Enhanced

Si-based Transistors

Close Cousins!

John D. Cressler, 6/10 3SiGe C-MODFETs / Ge MOSFETs



SiGe Strained Layer Epi

Practice Bandgap Engineering    
The Bright Idea!

… but do it in Silicon! 

ΔEVV
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When You Do It Right …

• Seamless Integration of SiGe into Si

No Evidence
of Deposition!50 nm
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The SiGe HBT
The Idea: Put Graded Ge Layer into the Base of a Si BJT
Primary Consequences:

• smaller base bandgap increases electron injection   (β )
• field from graded base bandgap decreases base transit time   (fT     ) 
• base bandgap grading produces higher Early voltage   (VA      )
• decouples base profile from performance metrics
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SiGe Success Story

• SiGe = SiGe HBT + Si CMOS for Highly Integrated Solutions
• Rapid Generational Evolution (full SiGe BiCMOS)

Significant In roads in High speed Comm nications ICs• Significant In-roads in High-speed Communications ICs

3rd

4th

2nd

3rd

130 nm!

1st

G ( )
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SiGe = III-V Speed + Si Manufacturing
Win-Win!

50 nm
Ge(x)



SiGe Performance Limits

• Half-TeraHertz SiGe HBTs Are Clearly Possible (at modest lith)
• Both fT and fmax above 500 GHz at Cryo-T (scaling knob) 
• Useful BV @ 500 GHz  (BVCEO > 1.5 V + BVCBO > 5.5 V)

1st - 3rd generation
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200-500 GHz @ 130 nm Node!



New SiGe Opportunities

• SiGe for Radar Systems
- single chip T/R for phased arrays, space-based radar  (2-10 GHz & up) 

automotive radar (24  77 GHz)- automotive radar (24, 77 GHz)

• SiGe for Millimeter-wave Communications 
- Gb/s short range wireless links (60, 94 GHz)
- cognitive radio / frequency-agile WLAN / 100 Gb Ethernet

• SiGe for THz Sensing, Imaging, and Communications 
- imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)imaging / radar systems, diagnostics, comm (94 GHz, 100 300 GHz)

• SiGe for Analog Applications
- the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)

SiG  f  E t  E i t El t i• SiGe for Extreme Environment Electronics
- extreme temperatures (4K to 300C) + radiation (e.g., space systems)

• SiGe for Electronic Warfare 
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- extreme wideband transceivers (20 MHz – 20 GHz)
- dynamic range enhanced receivers
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- extreme wideband transceivers (20 MHz – 20 GHz)
- dynamic range enhanced receivers



SiGe For Space Systems

•  The Holy Grail of the Space Community
- IC technology space-qualified without additional hardening
- high integration levels to support SoC / SiP (low cost)high integration levels to support SoC / SiP (low cost)

proton  + electron belts

Key Question: y
Can SiGe Play a 
Major Role in 
Space Systems?Space Systems?

•  Total Ionizing Dose (TID) – ionizing radiationg ( ) g
- 100-500 krad(Si) over 10 years for orbit (300 rad(Si) is lethal to humans!)

•  Single Event “Stuff”– heavy ions
- measure data upset cross-section (σ) vs  Linear Energy Transfer (LET)
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measure data upset cross section (σ) vs. Linear Energy Transfer (LET)
- σ = # errors / particle fluence (ions/cm2): LET = charge deposition (pC/μm)
- Goals: low cross-section + high LET threshold
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SiGe HBTs at NSREC

10

Total SiGe HBT Papers @ NSREC: 
1995-2010 = 74
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Radiation Experiments 
(1995-2010)

• SiGe Technology Generations (Devices + Circuits!):
- 1st Generation (50 GHz HBT + 0.35 um CMOS)

2rd G ti  (100 GH  HBT  180  CMOS)- 2rd Generation (100 GHz HBT + 180 nm CMOS)
- 3rd Generation (200 GHz HBT + 130 nm CMOS)
- 4th Generation (pre-production 300 GHz HBT)

- many different companies (npn + pnp; bulk + SOI)

• TID Radiation Sources:
- gamma ray (>100 Mrad + LDR)- gamma ray (>100 Mrad + LDR)
- proton (1-24,000 MeV + 77K) 
- x-ray
- neutronneutron
- prompt dose (krad / nsec)

• Single Event Effects:
broad beam heavy ion  
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- broad beam heavy ion  
- ion microbeam
- laser (top-side + TPA)

p



Total-Dose Response
• Multi-Mrad Total Dose Hardness (with no intentional hardening!)

- ionization + displacement damage very minimal over T; no ELDRS!
• Radiation Hardness Due to Epitaxial Base Structure (not Ge)• Radiation Hardness Due to Epitaxial Base Structure (not Ge)

- thin emitter-base spacer + heavily doped extrinsic base + very thin base

h4th

200 GHz 
SiGe HBT

3rd

2nd

1st

John D. Cressler, 6/10 1563 MeV protons @ 5x1013 p/cm2 = 6.7 Mrad TID!



TID Effects: Summary

SiGe HBTs are Inherently Tolerant to TID
… as Fabricated!

Minimal damage to devices + circuits (all sources; no ELDRS)
Typically multi-Mrad capability, as built
TID-induced damage improves with SiGe technology scaling
No ac performance degradation across all SiGe generationsp g g
SiGe HBTs much less sensitive to bias effects than CMOS
SiGe HBTs function after 100+ Mrad exposure! 
Reduced TID damage at cryogenic temperaturesReduced TID damage at cryogenic temperatures

Lots of Interesting Physics …

John D. Cressler, 6/10 16

The Story is NOT Over …
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Single Event Effects

• Observed SEU Sensitivity in SiGe HBT Shift Registers
- low LET threshold + high saturated cross-section (bad news!)

h  i

G l

heavy ion

Goal…
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P. Marshall et al., IEEE TNS, 47, p. 2669, 2000



SEU: TCAD to Circuits
“TCAD Ion Strike” New RHBD SiGe Latch

OUT

DATA

C OC
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CLOCK

Standard Master Slave Latch UPSETSSEU “Soft”



SiGe RHBD Success!

• Reduce Tx-Tx Feedback Coupling Internal to the Latch
• Circuit Architecture Changes + Transistor Layout Changes 

(no errors!)
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No SEU to LET’s of 70!



Device-Level RHBD

• Reduced Deep-trench Area ⇒ Improved Cross-section
• Trench Area in CBE (RHBD) Device Reduced by 73% 

AE = 0.12×2.50 µm2 (CBEBC)

A = 0 12×0 52 µm2 (CBE)AE = 0.12×0.52 µm2 (CBE)

John D. Cressler, 6/10 21
RHBD SiGe HBT



Circuit-Level RHBD

• DI DFF: Limited Transistor-level Decoupling in Storage Cell
• GFC DFF: OR-gate Logic Correction and Load Diode Clamps

Master Stage of GFC DFFDI DFF
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Register-Level RHBD

• DI TMR: Triple Modular Redundancy in DI SR
• GFC TMR: Triple Modular Redundancy in GFC SR
• GFC-Hardened Clocks
• Voting Performed Using Parallel GFC/Unhardened Voters

TMR Bl k DiTMR Block Diagram

John D. Cressler, 6/10 23LOTS of Overhead!



Can We Eliminate TMR       

and Still SEE-Harden SiGe?

John D. Cressler, 6/10 24



New RHBD Approaches

Inverse-mode Cascode (IMC) SiGe HBT

SiGe HBT on Thick Film SOI 
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GFC latch  + IMC + SOI  = SEU hard?  
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The Moon:
A Classic Extreme Environment!

Temperature Ranges:
+120C to -180C (300C swings!)
28 day cycles

Rovers / Robotics

28 day cycles

Radiation:
100 krad over 10 years
single event upset (SEU)single event upset (SEU)
solar events

Many Different Circuit Needs:
digital building blocks R i C t li d “W B ”digital building blocks
analog building blocks
data conversion (ADC/DAC)
RF communications

Requires Centralized “Warm Box”

power conditioning
actuation and control
switches
sensors / sensor interfaces

John D. Cressler, 6/10 27

sensors / sensor interfaces

Highly Mixed-Signal Flavor!



SiGe HBTs for Cryo-T
The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:
ll b b d i l t i j ti (β )• smaller base bandgap increases electron injection   (β )

• field from graded base bandgap decreases base transit time   (fT     )
• base bandgap grading produces higher Early voltage   (VA      )
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All kT Factors Are Arranged to Help at Cryo-T!



SiGe HBTs at Cryo-T

27C

dc                                                               ac

-230C

SiGe Exhibits Very High Speed 
V P !

John D. Cressler, 6/10 29

at Very Low Power!

First-Generation SiGe HBT



Remote Electronics Unit
The X-33 
Remote Health 
Unit, BAE 
Systems,

The ETDP SiGe Remote 
Electronics Unit, 2010

REU in ay
circa 1998

REU in a 
package!

SiGe Analog 
front end die

SiGe Digital 
control die

X-33

• 5” x 3” x 6.75” = 101 in3

• 11 kg
• 1.5” x 1.5” x 0.5” = 1.1 in3 (100x)
• < 1 kg (10x)

Specifications Our SWAP Goals

11 kg
• 17 Watts 
• -55oC to +125oC

< 1 kg (10x)
• < 2 Watts (10x)
• -180oC to +125oC, rad tolerant

John D. Cressler, 6/10 30

Supports Many Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

Use This SiGe REU as a Remote Vehicle Health Monitoring Node



SiGe REU Architecture
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Major Advantages:
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Major Advantages:
• Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
• Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
• Commonality (easily adapted from one system to the next)



MISSE-6,7 ISS Missions

SiGe Circuits!

Recent NASA photograph of MISSE 6 after deployment
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Recent NASA photograph of MISSE-6 after deployment, 
taken by the Space Shuttle Crew



Cryogenic SiGe LNAs

X-band LNA Operation at 15 K (Not Yet Optimized!)
• T < 20 K (noise T)• Teff < 20 K (noise T)
• NF < 0.3 dB
• Gain > 20 dB
• dc power < 2 mW NF = 0.3 dB!
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Collaboration with S. Weinreb, Cal Tech This SiGe LNA is Also Rad-Hard!



Operation at Sub-1K! 

• SiGe HBT Works Just Fine Down to 300 mK!
• SiGe Reference Circuit Also Works! (700 mK)

John D. Cressler, 6/10

Collaboration with NASA-GSFC:
S. Aslam, T. Stevenson, and B. Meloy
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Some Thoughts / Ideas

• We now know how to build robust, reliable, complex 
mixed-signal (analog, digital, RF) SiGe electronics to 
operate in Lunar/Martian/Europa/Titan/etc. environments 

• We can provide warm-box free SiGe “electronic suites” for 
id l f i t t / / t l / da wide class of instrument / sensor / control / comm needs 

that can provide dramatic reductions in SWAP 

< 1 0 i 2 ( ll)

Complex on-Surface Electronics
analog, sensors, digital, RF, power, etc.  

< 1.0 in2 (small)
< 100 g  (light weight)
< 1-2 W for SYSTEMS (low power) 
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Key Takeaway:  Environmentally Invariant Electronics



Summary

• SiGe HBT BiCMOS Technology                                                  
- combines III-V speed with Si manufacturing (win-win)        
- many new apps (SiGe is a natural for space environments)

• Using SiGe HBTs in Radiation Environments
built in total dose hardness (multi Mrad!) - built-in total-dose hardness (multi-Mrad!) 

- SEU is an issue to be reckoned with (fast digital = worst case) 

• SiGe Technology Can Provide Mission Designers With:
- environmentally-invariant electronic suites 
- warm-box free operation
- dramatic reductions in SWAP
- improved reliability
- commonality of electronic systems

John D. Cressler, 6/10 37

New Ways to Think About NASA Mission Design
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