

NASA Electronic Parts and Packaging (NEPP) Program - 2018 Electronics Technology Workshop

Printed Hybrid Electronics (PHE)

June 19, 2018

AGENDA

- Corporate Overview
- Technology Comparison: PHE vs. PCB
- QRC PHE Initiative
 - Capability Development Cycle
 - Phase 1 Goals
 - Printed MCM Demonstrator: HERCULES
 - PCB Repair
 - Ink Characterization
 - Phase 2 Plans
- Questions

POLARIS ALPHA: CORPORATE OVERVIEW

200+ HIGHLY CLEARED CYBER PROFESSIONALS

SOPHISTICATED C5ISR, EW & SENSOR PROTOTYPING/INTEGRATION

30+ AMAZON WEB SERVICES (AWS) CERTIFIED ARCHITECTS AND DEVELOPERS

300 TECHNICAL PROFESSIONALS SUPPORTING SPACE AND CYBER PROGRAMS

19,000 SQUARE FOOT ACCREDITED SCIF SPACE

CAPABILITY (QRC)
SERVICES

- Founded in 2016 when 4 successful companies, EOIR, ISS, INTELESYS and PROTEUS Technologies came together to form an agile, high-tech solutions provider
- Expanded in 2017-2018 with SOLIDYN SOLUTIONS and FOURTH DIMENSION ENGINEERING to establish one cohesive mid-tier leader
- Acquired in 2018 by PARSONS
- Critical mass in emerging warfighter domains (cyber, space, and the electromagnetic spectrum)
- Broad experience in research and development as well as operationally-fielded systems
- Employs over 1,300 technical experts with deep subject matter expertise worldwide
- Broad portfolio of IP including software and hardware products
- ~\$340 million of 2018 forecasted pro forma revenue

CYBER & SIGINT: BRIDGING SOLUTIONS

- Rapid-Turn Hardware Development & Manufacturing
 - Custom Microelectronics (ASIC, Multi-Chip Modules)
 - Low Volume, High Mix (200+ unique PCB designs/year)
 - High Reliability, Long Life (15+ years)
 - Information & IP Sensitive Customers Government & Commercial (Trusted, Domestic Vendor Base)
 - Perform in space between Capability Development & Mission Implementation
- Reverse Engineering & Vulnerability Analysis
- Test Design & Execution (Functional Verification, Environmental, RF)

Quick Reaction Capability (QRC) Mission

- Project durations ranging from 24 hours to 6 months
- 300+ QRC responses, 1000+ fielded systems since 2009

WHY PRINTED ELECTRONICS? PCB VS. PHE

Printed Circuit Board

 Imaged, developed and etched (subtractive) foil on dielectric substrate (i.e. organic: glassreinforced resin composite). Planar construction where multiple layers are achieved through lamination and the use of drilled and plated (additive) interconnecting vias.

Printed Hybrid Electronics

 Printed layers of filled, conductive ink (i.e. metal, metal oxide) and dielectric resin (additive). Layers can be non-planar (3D construction).

WHY PRINTED ELECTRONICS? PCB PROCESS

<u>Issues</u>: Outsourcing (Time, Information), Expensive (Volume-driven), Design Limits (Planar, Vendor Rules) *Problem is amplified for chip-level integration

WHY PRINTED ELECTRONICS? PHE PROCESS

<u>Pros</u>: In-house (control IP), Quick-turn & Inexpensive (low volume), Unique 3D Geometries <u>Cons</u>: Immature Technology, Applications gated by Materials/Equipment/Software R&D

QRC PHE INITIATIVE: PHASE 1 GOALS

Establish a quick-reaction capability for the design, manufacture, test and integration of <u>fieldable</u> PHE solutions

- Phase 1 (FY'18) Scope
 - Set up QRC PHE Additive Manufacturing Capability
 - Collaboration with Research Labs
 - Printed MCM (low complexity) HERCULES
 - Optomec Aerosol Dispense
 - PCB Repair Remove/Replace Traces, Apply Legend Ink, Dam & Fill
 - "The Haas" Syringe Dispense, retrofitted 5-axis CNC mill
 - Image Capture/Stitching/Processing
 - Material Identification & Qualification

PRINTED MCM DEMONSTRATOR: HERCULES-PHE

Product: Digital Multi-Chip Module (MCM)

- Low power, low speed, low thermal output
- HERCULES-WB (wirebond) built/qualified
- HERCULES-FC (flip chip) currently in fab

Goal: Develop a PHE version of HERCULES that is a drop-in replacement for HERCULES-FC

- Not limited by current material (resistivity, cure)
- In-house, Quick-turn
- Tech Transition: Die & BGA Interconnect

	HERCULES-WB	HERCULES-FC	HERCULES-PHE
Prototype	6wks, \$38K	-	<3wk, \$20K (est)
Production	3wks, \$16K min lot (quote)	-	<2wk, <\$12K min lot (est)
Size (mm)	7 x 7 x 1.3	4.5 x 4.5 x 1.2	4.5 x 4.5 x 1.0

Stack-U	p

Encapsulant	0.25 mm
Substrate	0.18 mm
Die Attach	0.03 mm
Silicon Die (Qty 4)	0.10 mm
36 I/O per die	
75 μm Sq Pads @ 100 μm Pitch	
Redistribution Layer (13 layers)	0.22 mm
10 μm conductor, 25 μm dielectric	
Metallized Bumps (Qty 64) (0.3 mm diameter)	0.18 mm
Total Thickness	0.96 mm

HERCULES-PHE: BUILD SEQUENCE

HERCULES-PHE: REDISTRIBUTION LAYER (RDL)

Photo of printed RDL Top (~ 30 um line width)

5-Layer Printed RDL 13 conductive & dielectric layers 13 separate sinter profiles (@ 225°C)

Estimate ~15 working days to print a batch of HERCULES RDLs with current material set and required cure profile

Photo of printed RDL Bottom

HERCULES-PHE: RDL - CAM TO PRINT COMPARISON

HERCULES-PHE: MULTILAYER SNAPSHOTS

HOTTOPIC: TEST PCB

HOTTOPIC

- Test substrate for printing and testing daisy chain test constructions, alignment to die pads
- Also includes a section for developing BGA placement process
- Evaluate HERCULES
 RDL in parallel with
 wafer/die procurement
 & die block fabrication

SPEEDBOARD: MATERIAL CHARACTERIZATION FOR HIGH FREQUENCY APPLICATIONS

High frequency design guidance for dielectric / conductor material sets and process variables

which impact the expected impedance

PCB REPAIR: 5-AXIS SYRINGE SYSTEM ("THE HAAS")

- Installation and initial setup of Haas VF-2TR completed
- Spindle grease packed and reinstalled 3/28

- Completed design and installation of syringe and alignment/in-situ cameras
- In-situ laser sintering system planned for ~ July / August 2018

PCB REPAIR: 5-AXIS SYRINGE SYSTEM PRINTS

Printed Legend Ink

PCB Repair Demo

INK CHARACTERIZATION & SELECTION

Creating repository of ink information as design resource Standardized ink testing procedure & coupon

Printability

Coupons for structures, art, lettering

Long, continuous, reliable prints

Optomec, Microscope, & Profilometer

Conductivity

4-Point resistivity measurement

Current source & voltmeter

Process Compatibility

Time (deposition rate)

Cure method (UV, temp, time)

Adhesion, etc.

INK PROCESS DEVELOPMENT & QUALIFICATIONS

Ensuring print meets build specifications

PHASE 2: PLANS

- Printed MCMs
 - Reliability/Life Extended Qual for HERCULES-PHE

 - Turn-Time Print/Cure Optimization, In-house Equip

 - Die Interconnects
 - Print to harvested/reclaimed die
 - Eliminate Encapsulation
 - Die Stacking / Flip Chip
 - Higher Density Die I/O
 - Print Resolution Target: 10µm
 - New equipment and materials sets required

- PCB Repair (Haas)
 - Reliability/Life identify/build demonstrator, extended qualification
 - Surface Trace ↑Power, ↑Speed
 - Interconnects SMT components, Vias
 - Imaging High resolution, automated capture/stitching/conversion
 - Material Research: soldermask, adhesive, via fill
- Printed Antennas (2D & 3D)
- Printed Energetics

QUESTIONS?

Laura Ramu Mechanical Engineer

Phone: (410) 290-1138

Email: laura.ramu@fourthdim.com

Kevin Rose Director of Business Development

Phone: (443) 690-2607

Email: kevin.rose@polarisalpha.com

Website: www.polarisalpha.com

Address:

7175 Columbia Gateway Dr. Suite D

Columbia, MD 21046

BACK-UP SLIDES

QRC PHE FACILITY & EQUIPMENT

QRC PHE Additive Manufacturing Lab 7175 Columbia Gateway Drive, Columbia, MD

Current (Onsite)

- Haas + Nordson
 - Dielectrics, conductors, legend ink
 - 100µm min. feature size
 - 5-axis movement (3D surfaces)
- X-ray
 - Advanced parts inspection

Future (Onsite)

- Optomec new release
 - 20µm min. feature size
 - 3-axis movement
- Microscope (June 2018), Profilometer & Stitching SW
 - Part inspection
- Alternate printing equipment
 - New materials: magnetic
 - Finer resolution: Down to 10µm min. feature size

Current (Offsite)

- Optomec Aerosol Jet Printer
- Die/Flip Chip Bonder
- High Precision Pick and Place

TECHNOLOGY ROADMAP

MILESTONES

- HERCULES-PHE (Optomec)
 - 2/1: Initial text and logo tests
 - 3/20: Printed Ag traces passed high speed traffic
 - 4/11: Ag plane / Dielectric / Ag trace microstrip completed
 - 4/24: Printed Ag plane / Dielectric / Ag trace stackup, passed high speed traffic
 - 4/11: Initial test of RDL fan out layer
 - 5/8: All layers of RDL individually printed & multi-layer print on single encapsulated die

- Haas Syringe System to Date
 - 3/28: Haas with grease pack spindle setup
 - 5/1: FP4451 Printed Dam
 - 5/4: Printed Ag traces, passed high speed traffic
 - 5/10: PCB Repair Demo

CYBER & SIGINT: BRIDGING SOLUTIONS

Successfully completed 300+ QRC (24 hour to 6 month) responses and delivered 1,000+ fielded systems since 2009

- Systems Engineering & Program Management
- Embedded Hardware, Firmware & Software Design
 - ASIC & Multi-Chip Module Design
 - Printed Circuit Board design, fab, assy & test (200+ unique designs per year)
 - FPGA design
 - Mechanical, electronics packaging design
 - RF/analog antenna design
 - Modeling & simulation (thermal, structural, RF)
 - Embedded software (ARM, MIPS, PowerPC, 8051)
 - Micro-power systems, power harvesting
 - LPI/LPD communication system development (GPS, GSM, wireless LAN, bluetooth, RFID, custom)
 - Reverse Engineering & Vulnerability Analysis

- Manufacturing Low Volume, High Mix
 - Commercial Outsourcing
 - Hybrid wafer foundry, chip-level assembly
 - PCB fabrication & assembly
 - Metal & plastic fabrication/finishing
 - In-house Niche Capabilities (Secure & Unclassified)
 - Electronics assembly & integration
 - Additive Mfg Printed Hybrid Electronics
 - Machine Shop & Vehicle Bay
- Test Design & Execution
 - Functional Verification
 - Environmental temp, humidity, shock/vibe, etc...
 - RF anechoic chamber, indoor test range, roof access

