2019 NASA NEPP Electronics Technology Working Group Meeting June 17th, 2019 NASA Goddard

AS6294/1 and AS6294/3 – PEMs and PEDs for Space

Sultan Ali Lilani Jonathan Hochstetler

AS6294 PEM Task Team

Celebrating over 30 years of providing high quality semiconductor development and test services.

2 Balloted Documents - AS6294/1 & /3

Joint CE-12 / JC-14.3 PED / PEM Flows

- AS6294/1 Requirements for Plastic Encapsulated Microcircuits in Space Applications - Released
- AS6294/3 Requirements for Plastic Encapsulated Discrete Semiconductors in Space Applications – In Process of Being Released

SAE CE-12 PEM Task Team

- Leadership
 - Anduin Tow CE12 Chair
 - Sultan Ali Lilani Integra Technologies (PEM Task Team Chair)
 - David Locker US Army (Team Lead Avionics / Terrestrial PEMs)
 - Rod de Leon Boeing Satellite (Team Lead Space PEMs)
- Meetings: Weekly (started 2/25/2014)
 - Alternate weekly meetings between Space and Avionics / Terrestrial
- Members
 - On average, 15 members attend weekly meetings (65+ members in distribution list)
 - Representatives from Boeing, Lockheed, NG, L-3, Aerospace, NASA, Xilinx, ON, TI, ADI, Intel, Army, Air Force, Honeywell, IRF, Rockwell Collins, DLA, BAE, Integra Technologies, Hi-Rel Lab. DPACI etc.

- What Motivated Us to Start the Task Team
 - PEMs being used for Avionics / Terrestrial and in some Space applications
 - Automotive grade parts are getting wider acceptance
 - Commercial parts are being used after screening and qualification
 - In some cases; Industrial grade parts are being used with no screening and qualification
 - Very little usage of Class N devices for Space application
 - Some usage of EP (Enhanced Plastic) devices
 - No one comprehensive flow existed that OEMs can use either for A/T or Space application. PEM-INST-001 or Marshall MSFC-STD-3012 s extensively used by many OEMs but frequently modified by OEMs for their application
 - There are many other flows that various OEMs use and significantly differ from PEM-INST-001
 - PEM-INST-001 and other flows are written around Microcircuits
 - However; we see Discrete devices also for used in plastic packages

Task team focus

Objective is to come up with a Standardized PEMs Flow for the Industry

Comparison of known Industry PEMs flow and Major Subcontractors, OEM, OCM practices

Consensus was to use Marshall MSFC-STD-3012 as baseline and cross referenced Goddard PEM-INST-001, MIL Handbook & Standards, JEDEC-Standards documents

Leveraging Existing Standards

- JEDEC
- AEC
- Mil Stds
- Examples:
- Coper Bond Wire
- Radiation Testing
- SAM

•

Temp Cycle

AS6294/1 Microcircuits

Celebrating over 30 years of providing high quality semiconductor development and test services.

Document foundation

	Table	1 - Manufacturer information
	<u>.</u>	Enhanced from PEM-INS I-00
#	Category	Information/Question
1		Part number
2		Function
3	General Information	Date code
4		Package type
5		Manufacturer
6		Device datasheet
7		Die process technology
8		Die revision or identification
9		Die layout or geometric configuration
10		Wafer lot information and fabrication location
11		ESD sensitivity level per Human body model (HBM) and Charged
		device model (CDM).
12		Moisture sensitivity level
13	Part	Date of last die revision
14		Date of introduction to the market
15		Product storing policy (years to keep in stock)
16		Packing parts for shipment, moisture control
17		Type of molding compound and characteristics (glass transition
		temperature, CTE, flame retardant)
18	Manufacturer	Vendor facility (location)
19		Point of contact for quality assurance
20		Quality certification of the vendor (ISO 9000 or equivalent)
21		Mask revision control
22		Application support
23		Part traceability
24		Availability of Statistical Process Control (SPC) data
25		What kind of 100% outgoing inspection and screening is used?
26		Availability of test flowchart
27	Process	Availability of reliability and quality assurance data
28		Average outgoing quality (AOQ) 1/
29		Major process capability indexes for the part (Cpk) 2/
30		Acceptable proportion of failures at high temperature measurements
31		Radiation hardness of the process or of similar parts
32		Are there any military parts manufactured using same technology?

Part/Device Characterization

- I. Construction Analysis
- 2. Device Evaluation

3. Radiation Hardness

Section 5 Device Characterization 5.3 Construction Analysis 5.4 Device Evaluation 5.5 Radiation Hardness

Part/Device Characterization

I. Construction Analysis

2. Device Evaluation

3. Radiation Hardness

Section 5 Device Characterization 5.3 Construction Analysis 5.4 Device Evaluation 5.5 Radiation Hardness

5.4.2 Recommended Evaluations

Significantly Enhanced Info than PEM-INST-001

In some cases, to address special quality or reliability concerns, an extended set of examinations to characterize design and materials used in PEMs may be required. The list of characteristics in Table 3 below gives an example of data that can be required.

Table 3 - Recommended evaluations or tests

1. Package-related	Physical dimensions, weight.
Terminal-related characterization	Solderability
	Terminal finishing materials (addressing tin whiskers problems)
	Mechanical integrity of leads
3. Molding compound-related characterization	Outgassing
na na na ani ini kana na bahar na bana na bana na bana na baharan sa kana na baharan sa kana na bahar na kana n	Mechanical characteristics (glass transition temperature [Tg], coefficient of thermal expansion [CTE])
	Chemical characteristics (impurities [P, Cl, Br, Na])
	a-particle emission
	Types of flame retardant
	Moisture characteristics (moisture diffusion and hygroscopic expansion coefficients); verify moisture sensitivity level (MSL) classification
4. Die-related characterization (materials and	Passivation
design)	Interlayer dielectric system
	Metallization system such as thickness, composition, EM rules, Antenna rules
5. Electrical performance characterization	Electrical at ambient, minimum, maximum temperature ranges (datasheet and the application specification range limits) to establish margins for utilization in Worst Case Analysis

Part/Device Characterization 1. Construction Analysis 2. Device Evaluation 3. Radiation Hardness Section 5 Device Characterization 5.3 Construction Analysis 5.4 Device Evaluation 5.5 Radiation Hardness

Radiation evaluation shall address all threats appropriate for the technology, application, and environment, including total ionizing dose (**TID**), Enhanced Low Dose Rate Sensitivity (**ELDRS**), single event effects (**SEE**), and displacement damage degradation (**DDD**) as defined in the project ionizing radiation control document.

Screening Flow

Section 6 Req'ts for Screening Section 7 Burn-in req'ts. Section 7 Burn-in req'ts. In accordance with JEP163 as applicable

SAE INTERNATIONAL

AS6294™/1

6. REQUIREMENTS FOR SCREENING

- a. Screening is applied to all flight parts in each lot by testing and inspecting every sample, and proactively affects reliability of the lot. Typically, the date code defines a lot and if additional information is available then that should be used for lot differentiation (e.g., wafer lot identification, part lot number). If there is no date code available the user has to contact the OEM/manufacturer to identify the lot.
- b. Refer to Table 4 for screening requirements of PEMs. A typical test flow for screening of PEMs is shown in Figure 4.

Screening Requirements

Adaptation by Manufacturers

- Analog Devices (CSL, CSM, CSH) Very similar flow for CSH)
- TI Space EP (Not exactly but has some of the tests
- Renesas / Intersil (Very similar flow)

AS6294/3 PEDs

Celebrating over 30 years of providing high quality semiconductor development and test services.

Key Features - AS6294/3

- First Discrete PEM Document
- Leveraging AS6294/1 and EEE-INST-002
- Closely Aligned to (Work In Progress) MIL-PRF-19500 Appendix J (Discrete plastic package) (Benny Damron Leading)
- Major Differences to Slash 1
 - Burn-in and Life Test Conditions per Mil Std 750 and EEE-INST-002

Required Burn-i		ired Burn-in	Delta	
Transistor Types	HTRB (Condition A)	Power (Condition B)	Parameters	Electrical Measurements
Bipolar Transistors (Switching, Low High Power, Dual, General Purpose)	80% rated V _{CBO} 125 °C <t<sub>A<150 °C</t<sub>	Specify V _{CB} or V _{CE} to meet max P _T T _A = 25 °C	ΔI _{CBO} or ΔI _{CEO} Δh _{FE}	$\begin{array}{c} \text{ICB, ICEO, ICBO, IEBO, V(BR)CEO,} \\ \text{V}_{(\text{BR})\text{CBO}, V(\text{BR})\text{EBO}, V(\text{BR})\text{CES},} \\ \text{V}_{(\text{CE}(\text{SAT}), \text{VBE}(\text{SAT}), \text{hfe}, \text{ton, toff, } t_{\text{s}},} \\ \text{t}_{\text{f}}, \text{h}_{\text{fe}}, \text{C}_{\text{obo}}, \text{C}_{\text{ibo}} \end{array}$
Bipolar Transistors	80% rated V _{CBO}	Specify V_{CB} to meet max P_T	ΔI _{CEO}	$I_{CEO},V_{(BR)CEO},V_{(BR)CBO},V_{(BR)EBO}$
(RF, High-Frequency)	125 °C <t<sub>A<150 °C</t<sub>	T _A = 25 °C	Δh_{FE}	V _{CE(SAT)} , h _{FE}
				GPE, NF, hfe, η, Cobo
Junction Field Effect	80% rated Vgs	80% rated Vgs	ΔIDSS or ΔIGSS	$V_{\text{DS}(\text{ON})}, V_{\text{GS}(\text{OFF})}, V_{(\text{BR})\text{GSS}}, \text{Igss},$
(JFET)	V _{DS} = 0	Specify V _{DS} to meet max P _T	Δy _{fs}	IDSS, Ciss, Crss, Yfs, Yos
	125 °C <t<sub>A<150 °C</t<sub>	T _A = 25 °C		
MOSFET	80% rated V _{DS}	80% of rated V _{GS}	ΔI _{DSS} or ΔI _{GSS}	$V_{(BR)DSS}, V_{GS(TH)}, V_{DS(ON)}, V_{SD},$
	$V_{GS} = 0 V$	V _{DS} = 0 V	ΔV _{GS(TH)}	r _{ds(on)} ,
	T _A = 125 °C	T _A = 125 °C	$\Delta r_{ds \ (on)}$	t _{on} , t _{off} , t _{rr} , C⊤
Darlington	80% rated V _{CBO}	Specify V _{CB} or V _{CE} to meet	Δh _{FE}	VCE(SAT), VBE(SAT), VBE(TH),
	125 °C <t<sub>A<150 °C</t<sub>	max P⊤	Δlce	V(br)ceo, Iceo, Iebo, Ice
		T _A = 25 °C		hFE, ton, toff, Cobo
Optocoupler	IF = 0	I⊧ = rated max	Δhfe	VCE(SAT), V(BR)CEO, VF
	80% Rated VCBO	Specify V_{CE} to meet max P_T		IC(OFF), IC(ON), IR,
	T _A = 125 °C	T _A = 25 °C	ΔI _{C(ON)}	hfe, tr, tf, Cobo

Table 6 - Burn-in and electrical measurement requirements for transistors 1/, 2/, 3/

			L
6. Life Testing	High Temperature	MIL-STD-750, Methods as listed	
Subgroup 1	Operational Life Testing (HTOL) 125 °C or maximum	For Diode and Bipolar Transistor -	
	operating temperature 5/	TM1027 Steady State Life test for	
		1000 hours minimum at maximum	
		junction temperature	
		In a different fan Darwan da da ar	
		In addition for Power devices:	
		Steady State Gate Stress 48 hours	
		,,	
		Power MOSFET – TM1042 Cond A	
		Steady State Revere Bias, 240 hours	
		Power MOSEET or Power IGBT	
· · · ·		Intermittent Operational Life (IOL)	
		TM1042 Cond D	
		or	
		I M1037 for case mount style (e.g., stud, flange, and disc) devices	16(0)
		stud, hange, and disc) devices.	
		IOL Number of cycles:	
		From TA = 25 °C, Parts powered to	
		insure $\Delta T_J \ge 100 ^{\circ}C$ (not to exceed	
		absolute maximum ratings) = 15000	
	Electrical measurement (per	Measure at 25 °C, minimum and	
	device specification)	maximum rated temperatures	
	Read and Record		