Chiplet Technology & Heterogeneous Integration

A Leading Provider of Smart, Connected and Secure Embedded Solutions

Anu Ramamurthy June, 2021

Agenda

Concepts of Heterogeneous Integration

- Definitions
- Advantages/disadvantages

2.xD Ecosystem

- Physical interconnects
- Interfaces

3D Ecosystem

- Stacking options
- Technical Considerations

Conclusions

Definitions

Heterogeneous Integration

 Integration of separately manufactured components into a higher-level assembly to create a System-in-Package, SiP

Chiplets

• Die specifically designed and optimized for operation within a package in conjunction with other chiplets. Drives shorter distance electrically. A chiplet would not normally be able to be packaged separately.

• 2.x D (x=1,3,5 ...) – HiR Definition

 Side by side active Silicon connected by high interconnect densities

• 3D

• Stacking of die/wafer on top of each other

Why Heterogeneous Integration?

Advantages	Disadvantages	
Smaller die \rightarrow higher yield	Additional area for interface ~ 10% Additional area for TSVs ~2-5%	
 Flexible and optimized process selection Use mature process for some chiplets Shrink digital area/power for digital Ability to re-use IP – reduce R&D cost 	Packaging/assembly costs Additional design effort/complexity New methodologies	

No one size fits all, need to evaluate the technology and cost of integration

Example

- Large monolithic single die 625 mm² (example)
- Split into multiple die (4) 172 mm² each
- Overhead ~10% (for interconnect)
- Next, take advantage of digital scaling with process. Higher performance and lower area going to chiplet style integration

Introduction to Die-to-Die (D2D) Interfaces

How do chiplets talk to each other?

- Similar to chip communication on a PCB
- Except:
 - Chiplets are on a common substrate
 - Chiplets are much closer to each other
 - Need smaller drivers to meet this requirement (power, area)
 - The type of interface selected, and the type of packaging selected are closely tied

OCP Subgroup **"Open Domain Specific Architecture"**

How Do You Select a D2D interface ?

Function/product specification

- Homogeneous/heterogeneous stacking
- Which functional pieces are going to chiplet form
- Align with a standard or choose an open/proprietary system

Priorities

- Power/performance/area
- IO limited (beachfront)
- Latency
- Bandwidth

Packaging

• Cost

High Level Representation of D2D Interface

Serial interface (XSR like)

- High data rate
- High latency
- Higher power
- Low-density routing
- Organic substrate

Parallel interface (AIB, BoW, Open HBI)

- Low data rate
- Low latency
- Lower power
- High-density routing
- Organic/interposer

Physical Interface (D2D interface)

	AIB	Bunch of Wires (BoW)	Open HBI	XSR
Туре	parallel	parallel	parallel	Serial
Clocking Scheme	Clk. forwarding	Clk. forwarding	Clk. forwarding	Clk. recovered
Signaling	DDR	DDR	DDR	Differential
Reach (trace length)	<10 mm	5 mm (unterminated) 50 mm (terminated)	4 mm	~50 mm term
Intended substrate	EMIB/interposer Organic	Organic substrate/interposer	Interposer	Organic substrate

2.xD Integration

Silicon Interposer

RDL Interposer

- Organic substrate
- Bump pitch: 150 um
- Low pin count
- L/S: 13 um/13 um
- >1 mm between die
- Cheaper packaging

- Silicon interposer
- Microbump pitch : 40-55 um
- Higher pin count
- Submicron routing pitch
- <100 um between die
- Higher-cost packaging

- Up to 4 RDL layers
- Medium pin count
- 4 um pitch
- ~100 um between die
- Medium-cost packaging

Current Volume Production in 2.xD

Silicon interposer

 FPGA slices connected using high density interconnects on a silicon interposer

 High-Bandwidth Memory (HBM) connected to ASIC/FPGA/CPU on silicon interposer

- ASE HBM integration
 - Interposer 4 HBM2e
 - Al training

- FoCoS- ChipLast
 - 3500 RDL traces (4 layers)

Courtesy: ASE

3D Stacking

Wafer on Wafer

- Lower yield
- High throughput
- Same size die

Die on Wafer/Chip on Wafer

- Pick and place of KGD
- Different sized die

Two ways to connect the die:

- Microbump Cu pillar bump with 55 um pitch
- Hybrid bond Cu-Cu and oxide to oxide bond

Current High Volume in 3D Stacking

High-Bandwidth Memory

- JEDEC standard
- 3rd generation of HBM 16 DRAM stacked on logic
- Face to Back stacking using Microbumps and TSVs

CMOS Image Sensors

- Sensor stacked on logic
- Face-to-Face stacking -WoW

Technical Considerations

Disaggregating the SoC

- Logic partitioning to chiplets
- System level simulations to model the system of chiplets
- Design for test
- ESD requirements
- Thermal considerations especially if 3D stacking
- Signal integrity considerations for high-speed signals through TSVs
- Mechanical considerations for die warpage

Conclusions

- There is no one size fits all
- Evolving technology, expect to see cost reduction for assembly with time
- ODSA working to develop standards for chiplet integration
- Multiple D2D interconnect standards exist. Selection of the right interface depends on power/performance/area requirements, cost and other considerations

Thank You

