Qualification and Lessons Learned with Space Flight Fiber Optic Components

Melanie N. Ott
NASA Goddard Space Flight Center
Applied Engineering & Technology Directorate,
Electrical Engineering Division,
301-286-0127, melanie.ott@gsfc.nasa.gov
misspiggy.gsfc.nasa.gov/photonics
September 20, 2007

NASA Electronic Parts and Packaging Program
• Introduction
• NASA COTS Photonics Validation Approach
• Construction Analysis
• Vacuum Validation
• Vibration Parameters
• Thermal Parameters
• Radiation Parameters
• Examples:
 – Materials - Shuttle
 – Vibration – Qual vs. Workmanship, LRO
 – Thermal – ISS new candidates
 – Radiation – MLA, LRO
 – Motion, LRO
 – Lessons Learned, ISS
• Lessons Learned- Passive
• Conclusion
Our Group

Photonics Group at NASA Goddard Space Flight Center

Rick Chuska

Rob Switzer, Joe Thomes, Shawn Macmurphy, Frank LaRocca, Melanie Ott, Alex Potter

Adam Matuszeski, Xiaodan “Linda” Jin

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
Design, development and manufacturing of photonic systems and components; optical fiber assemblies, fiber amps, laser diodes, packaging, testing and qualification of components.

- Lunar Orbiter Laser Altimeter, (LOLA)
- Express Logistics Carrier (ELC), Photonics Comm system
- Lunar Reconnaissance Orbiter, (LR) Receiver Telescope assemblies
- Laser Risk Reduction, (LRRP)
- Laser Interferometer Space Telescope (LISA),
- NASA Parts and Packaging Prgm., (NEPP)
- International Space Station, (ISS)
- Shuttle Return to Flight Heat Tile Sensor Camera, Fiber Assemblies
- Sandia National Labs, Fiber Optic Systems
- AFRL for photonic systems
- Los Alamos National Labs, JPL for Mars Science Lab Chemcam
- Instrument Incubation Program, for Arrays and Fiber Amp Components (IIP)
- Robotics and LIDAR TRL enhancement using Fiber Lasers
- Mercury Laser Altimeter, (longest laser communication on record)
Changes in NASA Environment
 Short term projects, low budgets in new cases
 Instruments like MLA, VCL, LOLA, LRO, Shuttle

10 years ago changes to the Mil-Spec system, NASA relied heavily. Military needs vs. NASA needs different. Vendors and parts rapidly changing as companies change. Most photonics for NASA needs now COTS. Unique applications, used once, not in best interest of vendors to bid. Qualification far too expensive, won’t meet schedule. Characterization of COTS for risk mitigation. Quality by similarity where possible.
Issues to Consider

- Schedule, shorter term
- Funds available,
- Identify sensitive or high risk components.
- System design choices for risk reduction.
- Packaging choices for risk reduction.
- Quality by similarity means no changes to part or process.
- Qualify a “lot” by protoflight method—you fly the parts from the lot qualified, not the tested parts.
- Telcordia certification less likely now.
System Requirements (Instrument System Engineer): Define critical component parameters and the quantity by how each can deviate from optimal performance as a result and during testing -- Performance requirements.

Environmental Requirements (Mechanical, Thermal, Radiation Engineers)
- Contamination and materials requirements.
- Box level random vibration, double for component
- Thermal environment, 10°C higher at extremes
- Radiation, worst case conditions.

Failure Modes Study, (Components Engineer)
- Conditions and Parameters,

Test Methods
- Tailored to capturing the largest amount of failure modes while testing for space environment.

Test Plan
- Contains necessary testing for mission while monitoring for failure modes.
COTS Technology Assurance Approach

- Define Critical parameters
- Define acceptable performance parameters for post test
- Define components of modules to be tested
- Define number of samples to test

Construction Analysis

- Knowledge of materials
- Knowledge of construction design, physical analysis
- Destructive physical analysis (FEA for active parts)

- Components
- Modules

Failure Modes Study

Test Methods

- Capture largest amount of failure modes while testing for space experiment

Qualification Test Plan(s)

- Contains necessary testing for mission while monitoring for failure modes

Flow chart courtesy of Suzzanne Falvey, Northrup Grumman, based on M Ott reference:

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
Qualification Plan

Define critical parameters that must be stable during testing.
Define acceptable changes in performance parameters as a final result of testing and testing (dynamic and permanent). Acceptance criteria
Choose parts or system to be tested.
How many samples (sample size) can you afford to test (considering time, equipment, materials)?

Materials Analysis,
Outgas testing for anything unknown, take configuration into account.
Packaging!
Destructive Physical Analysis is crucial to formulation of testing plan

Vibration Survival and “Shock” (larger components) Test
Use component levels as defined by system requirements
Define parameters to monitor during testing

Thermal Cycling/Aging Test or Thermal Vacuum (depends on materials analysis)
Define which parameters will indicate which failure mode
Monitor those parameters during testing.

Radiation Testing
Accelerated dose rate, extrapolation model use if possible, worst conditions

Addition tests based on specific mission requirements?

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
COTS Space Flight “Qualification”

Materials Analysis
- Outgas testing for anything unknown
- Take configuration into account

Vibration Survival and “Shock Test”
- Use components levels as defined by system requirements
- Define parameters to monitor during testing

Thermal Cycling / Aging Test
- Define which parameters will indicate which failure mode
- Monitor those parameters during testing

Radiation Testing
- Accelerated dose rate
- Extrapolation model use if possible
- Worst conditions

Additional Tests
- Based on specific mission requirements

Qualification Assurance Plan
- Continued reliable performance over life of mission

Flow chart courtesy of Suzanne Falvey, Northrup Grumman, based on M. Ott reference:

September 20, 2007
misspiggy.gsfc.nasa.gov/photonics
Construction/Materials Analysis

Destructive Physical Analysis
 Identify packaging issues
Gases analysis, hermetic?
Materials identification,
 Packaging: wirebonds, die attach materials?
 Fluoropolymers?
Identify non metallic materials for vacuum exposure
 Potential contamination issues.
Cure schedules –
 Screening data vs. application

Construction Analysis is crucial!
 Long Term Reliability
 Will it survive harsh environments?

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
Environmental Parameters

- Vacuum requirements
 - (Materials Analysis or Vacuum Test or both)
- Vibration requirements
- Thermal requirements
- Radiation requirements
- Other Validation Tests
Environmental Parameters: Vacuum

Vacuum outgassing requirements:
- ASTM-E595,
 100 to 300 milligrams of material
 125°C at 10⁻⁶ Torr for 24 hours
 Criteria: 1) Total Mass Loss < 1%
 2) Collected Volatile Condensable Materials < 0.1%
- Configuration test
- Optics or laser nearby, is ASTM-E595 enough?
 - ask your contamination expert

1) Use approved materials, outgassing.nasa.gov
2) Preprocess materials, vacuum, thermal
3) Decontaminate units: simple oven bake out, or vacuum?
4) Vacuum test when materials analysis is not conducted and depending on packaging and device.

Space environment; vacuum is actually 10⁻⁹ torr, best to test as close as possible for laser systems. Many chambers don’t go below 10⁻⁷ torr.
Environmental Parameters: Vibration

Launch vehicle vibration levels for small subsystem (established for EO-1)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Protoflight Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.026 g^2/Hz</td>
</tr>
<tr>
<td>20-50</td>
<td>+6 dB/octave</td>
</tr>
<tr>
<td>50-800</td>
<td>0.16 g^2/Hz</td>
</tr>
<tr>
<td>800-2000</td>
<td>-6 dB/octave</td>
</tr>
<tr>
<td>2000</td>
<td>0.026 g^2/Hz</td>
</tr>
<tr>
<td>Overall</td>
<td>14.1 grms</td>
</tr>
</tbody>
</table>

However, this is at the box level, twice the protoflight vibration values establish the correct testing conditions for the small component.
Launch vehicle vibration levels for small component (based on box level established for EO-1) on the “high” side.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Protoflight Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.052 g²/Hz</td>
</tr>
<tr>
<td>20-50</td>
<td>+6 dB/octave</td>
</tr>
<tr>
<td>50-800</td>
<td>0.32 g²/Hz</td>
</tr>
<tr>
<td>800-2000</td>
<td>-6 dB/octave</td>
</tr>
<tr>
<td>2000</td>
<td>0.052 g²/Hz</td>
</tr>
<tr>
<td>Overall</td>
<td>20.0 grms</td>
</tr>
</tbody>
</table>

3 minutes per axis, tested in x, y and z
Environmental Parameters: Thermal

There is no standard, typical and benign –25°C to +85°C. –45°C to +80°C, Telcordia; -55°C to +125°C, Military

Depending on the part for testing;
Insitu testing is important,
Add 10°C to each extreme for box level survival

Thermal cycles determined by part type, schedule vs. risk
30 cycles minimum for assemblies, high risk
60 cycles for assemblies for higher reliability
100 or more, optoelectronics and longer term missions.

Knowledge of packaging and failure modes really helps with cycles determination.
Environmental Parameters: Radiation

Assuming 7 year mission,
Shielding from space craft

- **LEO**, 5 – 10 Krads, SAA
- **MEO**, 10 – 100 Krads, Van Allen belts
- **GEO**, 50 Krads, Cosmic Rays

Proton conversion to Total Ionizing Dose (TID)
At 60 MeV, \(10^{10}\) protons/Krad for silicon devices

For systems susceptible to displacement damage

Testing for displacement damage: 3 energies in the range ~ 10 to 200 MeV.
If you have to pick one or two energies stay in the mid range of 65 MeV and lower. Less probability of interaction at high energies.
Ballpark levels: \(10^{-12}\) p/cm\(^2\) LEO, \(10^{-13}\) p/cm\(^2\) GEO, \(10^{-14}\) p/cm\(^2\) for special missions (Jupiter).
Environmental Parameters: Radiation

Typical space flight background radiation total dose
30 Krads – 100 Krads over 5 to 10 year mission.

Dose rates for fiber components:
- GLAS, 100 Krads, 5 yr, .04 rads/min
- MLA, 30 Krads, 8 yr, .011 rads/min (five year ave)
- EO-1, 15Krad, 10 yr, .04 rads/min

Any other environmental parameters that need to be considered?

For example,
1) radiation exposure at very cold temp, or prolonged extreme temperature exposure based on mission demands.
2) Motion during cold exposure.

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
Materials Issues

Shuttle Return to Flight: Construction Analysis

Optical Fiber Pigtailed Collimator Assemblies
Lightpath: pigtailed fiber to collimator lens and shell
GSFC: upjacket (cable), strain relief and termination, AVIMS, PC, SM

Materials & Construction Analysis

- Non compliant UV curable adhesive for mounting lenses to case
 - Solution 1: replace with epoxy, caused cracking during thermal cycling
 - Solution 2: replace with Arathane, low glass transition temp. adhesive
 Lesson: coordinate with adhesives expert, care with adhesive changes.

- Hytrel, non compliant as an off the shelf product (outgassing, thermal shrinkage)
 - Thermal vacuum preconditioning (145°C, <1 Torr, 24 hours)
 - ASTM-E595 outgas test to verify post preconditioning.
 - Thermal cycling preconditioning (30 cycles, -20 to +85°C, 60 min at +85°C)
Materials Issues: Shuttle Return to Flight

Laser Diode Assemblies

Fitel: laser diode pigtails
GSFC: Upjacket (cable), strain relief, termination, AVIMS APC SM
Fitel uses silicone boot, non-compliant!
Too late in fabrication process, schedule considerations to preprocess.

Cable: Thermal preconditioning, 30 cycles
Hytrel boots: Vacuum preconditioning, 24 hours
Kynar heat shrink tubing, epoxy: approved for space use.

Post manufacturing decontamination of entire assembly required
Laser diode rated for 85°C processing performed at 70°C

September 20, 2007
misspiggy.gsfc.nasa.gov/photonics
Introduction

The Lunar Reconnaissance Orbiter; The Laser Ranging Mission and the Lunar Orbiter Laser Altimeter

HGAS Receiver Telescope mounted on antenna and a fiber array to route signal from HGAS to LOLA

September 20, 2007
Vibration Qualification vs. Workmanship Testing

We refer to “profiles” by their overall total grms values

Each test duration 3 minutes/axis, 3 axis with in situ monitoring

<table>
<thead>
<tr>
<th>Frequency Range (Hz)</th>
<th>Test 1: ASD levels</th>
<th>Test 2 ASD levels</th>
<th>Test 3 ASD levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>.052 g^2/Hz</td>
<td>.026 g^2/Hz</td>
<td>.013 g^2/Hz</td>
</tr>
<tr>
<td>20-50</td>
<td>+6 dB/Octave</td>
<td>+6 dB/Octave</td>
<td>+6 dB/Octave</td>
</tr>
<tr>
<td>50-800</td>
<td>.32 g^2/Hz</td>
<td>.16 g^2/Hz</td>
<td>.08 g^2/Hz</td>
</tr>
<tr>
<td>800-2000</td>
<td>-6 dB/Octave</td>
<td>-6 dB/Octave</td>
<td>-6 dB/Octave</td>
</tr>
<tr>
<td>2000</td>
<td>.052 g^2/Hz</td>
<td>.026 g^2/Hz</td>
<td>.013 g^2/Hz</td>
</tr>
<tr>
<td>Overall</td>
<td>20 grms</td>
<td>14.1 grms</td>
<td>10 grms</td>
</tr>
</tbody>
</table>

LOLA Qualification – 20 grms test
LOLA Workmanship – 9.87 grms (X), 8.08 grms (Y), 12.89 grms (Z)
LR Qualification - 3 Total Tests; 20 grms, 14.1 grms, 10 grms
LR Workmanship – 6.9 grms
Thermal Effects

Thermal stability is dependent on:

Cable construction
- Outer diameter (smaller = more stable).
- Inner buffer material (expanded PTFE excellent).
- Extrusion methods (polymer internal stresses).

Preconditioning
- 60 cycles usually keep shrinkage less than 0.1%
- Survival limits (hot case) is used for cycling.
- Cut to approximate length prior.

Termination
- Ferrule – Jacket isolation necessary.
- Polishing methods (especially at high power).
ISS Cable Candidates; Thermal Screening for Shrinkage

Because fluoropolymers have thermal shrinkage issues.

September 20, 2007
misspiggy.gsfc.nasa.gov/photonics
ISS Cable Candidates; Thermal Pre Qual, -121°C

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Fiber Type</th>
<th>Thermal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.L Gore</td>
<td>FON1012, FLEX-LITE™</td>
<td>OFS BF05202 100/140/172</td>
<td>-55 to +150°C</td>
</tr>
<tr>
<td>General Cable</td>
<td>OC-1260</td>
<td>Nufern (FUD-2940) 100/140/172</td>
<td>-65 to +200°C</td>
</tr>
<tr>
<td>W.L Gore</td>
<td>GSC-13-83034-00 1.8 mm</td>
<td>Nufern (FUD-3142) 62.5/125/245</td>
<td>-55 to +125°C</td>
</tr>
</tbody>
</table>

The above cable candidates were tested for 16 hours at -121°C
ISS Cable Candidates; Thermal Pre Qual, -121°C

9 meters

Thermally Induced Loss of
General Cable's OC-1260 100/140 Cable,
W.L. Gore's GSC-13-83034-00 62.5/125 & FON 1012 (100/140) Cables
(1310nm @ -121°C)
Thermal Life Performance

<table>
<thead>
<tr>
<th>Project/Type</th>
<th>Range</th>
<th>Cycles</th>
<th>Highest Δ IL</th>
<th>Post Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandia/MTP with Ribbon</td>
<td>-25°C to +80°C</td>
<td>60</td>
<td>< 2.0 dB</td>
<td>Ave gain</td>
</tr>
<tr>
<td>Mated pairs, ~ 6 m, 100 micron GI @ 850 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FODB/MTP with Ribbon</td>
<td>-20°C to +85°C</td>
<td>38</td>
<td>< 2.0 dB</td>
<td>Ave gain</td>
</tr>
<tr>
<td>Mated pairs, 5.25 m, 100 micron GI @ 850 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLA, Flexlite, AVIM, Mated pairs, 1 m, 200 micron, SI @ 850 nm</td>
<td>-30°C to +50°C</td>
<td>90</td>
<td>< 0.09 dB</td>
<td>Gain < 0.04 dB</td>
</tr>
<tr>
<td>LOLA / .75 m Flexlite, AVIM 5- Array to Fan Out, 200 um SI @ 850 nm</td>
<td>-30°C to +60°C</td>
<td>60</td>
<td>< 0.6 dB</td>
<td>< 0.06 dB, mostly gain</td>
</tr>
<tr>
<td>LR / 8 m Bundle, AVIM 7- Array, 400 um @ 532 nm</td>
<td>-55°C to +80°C</td>
<td>100</td>
<td>< 0.5 dB</td>
<td>Ave gain</td>
</tr>
</tbody>
</table>
Radiation Effects Mercury Laser Altimeter

Flexlite Radiation Test, 11.2 rads/min at –24.1°C

Radiation Conclusion: < .07 dB, using 11.2 rads/min, -24.1°C, 26.1 in, “dark”

Results for 10 m, at 30 Krads, -20°C, 850 nm, 23 rads/min ~ 1 dB or 0.10 dB/m

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
Radiation Effects Laser Ranging Array Assemblies

Extrapolation Radiation Induced Attenuation at 1 rad/min up to 200 krads

For 1 rad/min, -50°C up to 200 Krads, Radiation Induced Atten ~ 0.56 dB for 10m
For 1 rad/min, 24°C up to 200 Krads, Radiation Induced Atten ~ 0.44 dB for 10m

400/440 micron polymicro Technologies flexlite @ 532 nm

September 20, 2007
misspiggy.gsfc.nasa.gov/photonics
Radiation Testing at GSFC on Optical Fiber Candidates

Radiation Testing @ 1300 nm, OFS optical fiber

<table>
<thead>
<tr>
<th>Part</th>
<th>Dose Rate</th>
<th>TID</th>
<th>Temp</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF05444</td>
<td>0.1 rads/min</td>
<td>100 Krad</td>
<td>25°C</td>
<td>0.0048 dB/m</td>
</tr>
<tr>
<td>BF05202</td>
<td>14.2 rads/min</td>
<td>5.1 Krad</td>
<td>-125°C</td>
<td>0.14 dB/m</td>
</tr>
<tr>
<td>BF05202</td>
<td>42 rads/min</td>
<td>100 Krad</td>
<td>-125°C</td>
<td>1.5 dB/m</td>
</tr>
<tr>
<td>CF04530</td>
<td>14.2 rads/min</td>
<td>5.1 Krad</td>
<td>-125°C</td>
<td>0.053 dB/m</td>
</tr>
<tr>
<td>CF04530</td>
<td>42 rads/min</td>
<td>100 Krad</td>
<td>-125°C</td>
<td>0.064 dB/m</td>
</tr>
<tr>
<td>BF04431</td>
<td>0.1 rads/min</td>
<td>100 Krad</td>
<td>-25°C</td>
<td>0.91 dB/m</td>
</tr>
<tr>
<td>BF04431</td>
<td>0.1 rads/min</td>
<td>100 Krad</td>
<td>25°C</td>
<td>0.59 dB/m</td>
</tr>
</tbody>
</table>

“Radiation Effects Data on Commercially Available Optical Fiber,” M. Ott, IEEE NSREC 2002
Radiation Effects on Rare Earth Fiber for Lasers Paper Survey

Aluminum content increases radiation induced effects [1]

<table>
<thead>
<tr>
<th>Yb (mol %)</th>
<th>Al₂O₃ (mol %)</th>
<th>P₂O₅ (mol %)</th>
<th>TID Krad</th>
<th>Rad Induced Atten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13*</td>
<td>1.0</td>
<td>1.2</td>
<td>14</td>
<td>1 dB/m</td>
</tr>
<tr>
<td>0.18</td>
<td>4.2</td>
<td>0.9</td>
<td>14</td>
<td>12 dB/m</td>
</tr>
</tbody>
</table>

* Fiber also contains 5.0 mol% Germanium. Data at 830 nm, 180 rads/min.

Rare Earth dopant (Er) does not dominate over radiation performance [2]

<table>
<thead>
<tr>
<th>Part</th>
<th>Er Content</th>
<th>Al (%mol wt)</th>
<th>Ge (%mol wt)</th>
<th>Sensitivity 980 nm, dB/m Krad</th>
<th>Sensitivity 1300 nm, dB/m Krad</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE980</td>
<td>4.5 10²⁴ /m³</td>
<td>12</td>
<td>20</td>
<td>.013</td>
<td>.0041</td>
</tr>
<tr>
<td>HG980</td>
<td>1.6 10²⁵ /m³</td>
<td>10</td>
<td>23</td>
<td>.012</td>
<td>.0038</td>
</tr>
</tbody>
</table>

84 rads/min upto 50 Krad, 3 m under ambient

Radiation Effects on Rare Earth Fiber for Lasers Paper Survey

Low Dose Rate, .038 rads/min extrapolation for HE980

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Total Dose</th>
<th>Radiation Induced Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>980 nm</td>
<td>100 Krad</td>
<td>0.91 dB/m</td>
</tr>
<tr>
<td>1300 nm</td>
<td>100 Krad</td>
<td>0.26 dB/m</td>
</tr>
<tr>
<td>1550 nm</td>
<td>100 Krad</td>
<td>0.14 dB/m</td>
</tr>
</tbody>
</table>

Also shows wavelength dependence, consistent with other COTS fiber.
Yb and Er doped fibers are equivalent in terms of sensitivity.
Lanthanum doped fibers are extremely sensitive at ~10’s dB/m.
Yb and Er doped fibers exhibit saturation behavior.
Proton and gamma exposures show similar results.

To compare sensitivity to typical 100/140 at 100 Krads

<table>
<thead>
<tr>
<th>Temp</th>
<th>λ nm</th>
<th>Dose rate</th>
<th>Sensitivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>1310</td>
<td>.01 rads/min</td>
<td>1.7 10^{-4} dB/m</td>
<td>M. Ott, SPIE Vol. 3440.</td>
</tr>
<tr>
<td>50°C</td>
<td>850</td>
<td>.032 rads/min</td>
<td>2.0 10^{-4} dB/m</td>
<td>M. Ott, IEEE NSREC Data Workshop 2002.</td>
</tr>
</tbody>
</table>
LRO Laser Ranging Cold Gimbal Motion Life Testing

Gimbals

Window inside gimbal; Flexlite cable inside

Window inside gimbal; Bundle cable inside.

Gimbals w/ single flexlite in thermal chamber

Gimbals w/ bundle in thermal chamber

September 20, 2007

misspiggy.gsfc.nasa.gov/photonics
Gimbal Positions and Optical Insertion Loss@-20C
From 5454 to 5460 cycles
(Note: The fiber is tight at 0 position and loose at 180)

Insertion Loss [dB]

Date & Time

Results of Test 3 at -20°C, Last few gimbal cycles, flex losses <= 0.014 dB
LRO Laser Ranging Bundle Cold Gimbal Motion Testing Results

End of Test, relative IL ~ 0.50 dB, @ 850 nm, -20°C, 400/440 FV flexlite in Bundle

Gimbal Positions and Optical Insertion Loss@-20C
Fiber #4 @ 850nm with 19295 to 19300 cycles
(Note: The fiber is tight at 0 position and loose at 180)
International Space Station 2000

Failure Analysis: Optical Fiber Cable 1999-2000

Failure Analysis: Optical Fiber Termini 2005-2006

Bad Combination

Fiber Optic Cable “Rocket Engine” Defects

- Hermetic coating holes,
- Polyimide coating holds water
- Fluorine generated during extrusion of buffer
- Hollow tube construction
 - Water and fluorine interaction results in HF acid
 - HF etches pits into fiber getting through holes in coating
 - Etch pits deep into the core caused losses and cracks

September 20, 2007

misspiggy.gsfc.nasa.gov/photonics
International Space Station Study on Termini 2006

Vendor provided termini that somehow passed integration QA During integration by the contractor. Node 2 welded into place. Cost of changing termini on Node 2 more than $1 M. Node 3 fixed.

32 termini are installed into one “MIL-C-38999” type connector.

Termini end faces were found to be cracked after failing insertion loss testing during integration.

September 20, 2007 misspiggy.gsfc.nasa.gov/photonics
ISS Termini Failure Analysis

The below cross section of the terminus shows a concave end-face. This is per specification. If the end-face were convex, the glass would likely experience an impact when connected, causing a fracture.

The fiber must be free of cracks in order to prevent a degraded or blocked optical signal. If a glass fiber has a crack after the polishing process, the crack will grow over time.

The end-face of this optical fiber is 140µm. If dirt is present, the optical signal would be degraded or blocked.

The termination is made up of:
- A zirconia ferrule
- Polyimide coating
- Pure silica cladding
- Germanium doped core

Side View of Cross-sectioned Fiber in the Ferrule

Ferrule & Fiber End View

Core, Cladding, & Coating End View

September 20, 2007
ISS FA Optical Microscopy

Fiber Most Likely to Fail Because of Crack

Optical Microscopy:

• Bright field (Top) & dark field (Bottom) illumination (taken at 200X) can be used to enhance certain features of the terminus.
• At 200X, a crack formation can be seen, and the “smudge” appears to be sub-surface cracking.
• More information is required to characterize the crack.
• Optical microscopy is not enough to identify an origin of the crack, so SEM will need to be performed.

misspiggy.gsfc.nasa.gov/photonics
ISS FA Scanning Electron Microscopy

Fiber Most Likely to Fail Because of Crack

Scanning Electron Microscopy (SEM):

- SEM gives a clear image of the crack, and could be observed at over 50000X magnification.
- At 500X, the ends of the crack can be observed and analyzed.
- A concave or convex profile of the end-face cannot be determined using the SEM, so the terminus must be evaluated using confocal microscopy.
Confocal Microscopy:

- Confocal microscopy scans the surface of the terminus & displays the contour of the fiber end-face.
- The convex surface shown at the bottom left, would increase the likelihood of an impact when connected.
- The specification for end-face geometry is to be concave (bottom right) to reduce the risk of impact damage. 4 out of 10 termini returned, violate this spec.
Manufacturing of Fiber

Fiber Manufacturing:

• Note the off-center orientation of the fiber to the coating. This would cause measurable signal loss if mated to a fiber that has a concentric coating, and higher loss if mated to an identical fiber with the eccentricity 180° out.
• This eccentricity is a violation of the spec.
• Spec #SSQ 21654 sec 3.7 indicates that there should be no “thin spots” in the coating of the fiber.
• The terminus should not have passed QA and should have been rejected at the manufacturer’s site.
• GSFC would have rejected this termination & would have required a re-termination be performed.
• Note how the cracks emanate from the thick coating.
• Unbalanced stress would have been applied to this fiber during the epoxy cure process, accelerating crack growth.
Manufacturing Lessons Learned Summary

- **Identified Process Issues:**
 - Fiber Manufacturing – Added stress induced by non-concentric coating application.
 - Epoxy cure – GSFC uses epoxy cures as low as possible to reduce the CTE stress.
 - End-faces should be verified.
 - Polishing – GSFC uses low grit lapping film and never more than 0.5µm grit for rework.
 - Quality Assurance – If end-faces cannot be cleaned, they should be inspected at higher magnifications for possible damage, 200X is the GSFC requirement.
Lessons Learned and Learning: Passive Components

- Always perform materials analysis which may include a destructive physical analysis.
- If materials analysis is not performed please plan to do thermal cycling vacuum testing.
- Failure mode of delamination for LD coupled fiber or gain fiber may not show up during insitu monitoring as a degradation or failure mode.
- Final inspections on termini end faces shall be performed at 200 X prior to shipment for integration and inspected prior to integration for cleanliness.
- Cure schedules for larger core graded index fibers especially should be as close the lower bound of the operation temperature range as possible. High temp cure sets up a high stress situation.
- Just because you see a cure schedule in the outgassing.nasa.gov database that passes TML and CVCM requirements, doesn’t mean you have to follow the cure schedule listed.
- Graded index 100/140 is extremely brittle..special care required during termination and integration.
- Connector assemblies; decouple cable stresses from connector body
All components are not appropriate for all applications. Knowledge of failure modes and materials is crucial to making feasibility decisions as well as design, manufacturing procedures and test plans.

For more information please visit the websites:

NEPP.nasa.gov
misspiggy.gsfc.nasa.gov/photonics