Welcome

The purpose of this seminar is to familiarize you with the Workmanship Standards so that you can:

- Be an advocate for their use in the manufacture of NASA mission hardware
- Have insight about how they are intended to be used

Seminar Organization

In this seminar, we’ll cover the basics of Workmanship Standards, including:

- Terms and Definitions
- Fundamental intent and value added
- Policy authority
- Common requirements
- Examples of technical requirements
- Electrostatic Discharge Control requirements
Suggested Periods for Clandestine Blackberry Usage

![Graph showing suggested periods for clandestine blackberry usage. The x-axis represents time in minutes, and the y-axis represents importance. The graph includes lines for typical message importance, typical blackberry use, today's message importance, and suggested blackberry use.](image-url)
Intended Audience for this Seminar

Who Should Take This Seminar?
• Program managers, systems engineers, product lead engineers, design engineers, process engineers, reliability engineers, quality engineers, chief safety mission assurance officer (CSO), COTR

Who Should Not Take This Seminar?
• Assembly/manufacturing technicians or inspectors seeking workmanship training as a prerequisite to workmanship certification
• Reliability Engineers seeking to understand life expectancy of solder joints and cabling interconnects.
Materials and configurations named in the Workmanship Standards are considered technologically standard and have demonstrated high reliability for a broad range of NASA missions and thus are mature.

The Workmanship Standards specify design, processing, and inspection requirements, which are relevant to the materials and configurations named, which ensure high quality hardware is supplied.

Suppliers are expected to perform manufacturing using controlled processes, which operators implement using established procedures, and which results in a product that is compliant with the Workmanship requirements.

Suppliers who use configurations and materials not named in the Workmanship Standards must establish that the resulting hardware will be reliable for the applicable mission and must establish, declare, and use relevant design, processing, and inspection requirements to assure that the final items have high quality.
Terms and Definitions

Workmanship: Shorthand term for quality rules applied to the assembly of electronic boards and electrical cable harnesses. NASA groups Fiber optic cable assembly quality and ESD Control with Workmanship.

PCB: Printed Circuit Board. The bare board, with integrated electrical connections but no electrical parts installed. Treated like a EEE part; it is an integrated unit. Flex cables are a type of PCB.

PWA: Printed Wiring Assembly. A populated PCB. An electronic board with all parts installed. Sometimes called a CCA; circuit card assembly.

ESD: Electrostatic Discharge. Sudden discharge of electrical potential through readily available ground path. The affect on electronic assemblies can be catastrophic or crippling but visually hard to detect. Crippled parts may pass now and fail later.
Solder: Low melt-temperature metal alloy used to provide a conductive, long lasting connection between an electrical part lead and the pad of the printed circuit board or between a wire and a connector contact. 63% Tin (Sn) + 37% Lead (Pb) is standard for electronics.

Flux: Acid-containing material (organic or inorganic acid) used to remove oxide and residues from soldered surfaces thereby allowing the solder joint to readily form.

Staking: Polymeric material used to mechanically tack-bond part bodies to the PCB surface.

Conformal Coating: Polymeric material used to thinly coat a PWA to protect it from “bumps and bruises” and conductive debris. Will also retard surface corrosion of PWA exposed metal surfaces.
Wire: Single or stranded insulated conductor used alone or in a cable to support a single electrical connection.

Cable: Multiple wires bundled together inside an insulated layer used to support multiple electrical connections. Cables are terminated with connectors.

Harness: Multiple connectorized cables gathered together for interconnection of subsystems.

Jumper wire: (aka “white wire”) Wire used to provide a single electrical connection within a PWA. The termination method is a solder joint.

ESD Event Model: Industry standard description of an electrical discharge event using voltage, current, and time or an equivalent RLC circuit.
Quality: measure of an item’s compliance with published performance parameters (form/fit/function). Quality is relative to what the item is intended to do and can be measured. **Production lots with high quality are highly uniform.**

Reliability (1): Probability of failure of an item used in its intended operating environment before its intended operating life has been completed. Reliability is relative to the environment stress and minimum required life span. Sample size is important.

Reliability (2): Is capable of working in the mission environment for the duration of the mission.

Other uses of these terms:
- **Quality:** item is good or really good
- **Reliable:** item will not fail

Can something that is unreliable have high quality?
Are commercial products generally low quality?
Qualified or Qualification

Process Qualification: Quality parameters have been identified, are controlled, and are monitored to ensure that (a) un-screenable defects are not produced in the final item, (b) every item produced has identical quality, (c) scrap is minimized. Prototype runs and destructive tests are used to achieve (a) above. Non-destructive in-line and end-of-line tests and inspections are used to achieve (b) above. **Process Qualification ensures that the manufacturing recipe “works”**.

Product Qualification: Destructive testing used to (a) identify relevant screening tests to achieve high and uniform quality and to (b) demonstrate the capability of the finished item to perform as intended in the application environment for the duration intended. “Generic” qualification test flows may use very wide temperature ranges (e.g. mil-spec) and durations that test to failure. Mission-specific qualification test conditions may not be applicable to other missions (Qualification by Heritage). **Product Qualification ensures that the design+manufacturing+screening = a part that is not likely to fail in the mission.**

There is no NASA standard definition for Space Qualified. This is a marketing term.
Design Requirements: Controls materials and configurations (e.g. dimensions, placement, interface materials) selected to provide operational performance.

Workmanship Examples: Solder material, flux material, staking of wire runs to enable performance in shock/vibration environment.

Processing Requirements: Controls the manufacturing methods or techniques.

Workmanship Examples: Use of certain type of container to mix polymers to avoid contaminating the polymer, periodic alloy check of solder pot to ensure material purity, control of environmental conditions such as humidity.

Defect Criteria (aka accept/reject criteria, quality criteria): Physical attributes that are evidence of a defect or known to be indicative of the presence of a defect that will result in premature failure.

Workmanship Examples: solder joint appearance, presence of extraneous material, nicks and scrapes in conductors, missing material, delaminated material.

Training and Certification of Operators, Inspectors, and Instructors
Procedure or Requirements Document

Procedure: Step-by-step instructions for implementing a manufacturing process. Procedures will include steps that ensure that quality requirements are met. These steps may include use of special fixtures, checking temperature, ESD wrist strap check, in-process measurements, and end-point tests and inspections.

Requirement Document: Collection of requirement with applicable scope and intended requirements owners. May include accept/reject/defect criteria.

Workmanship Standards are Requirements Documents
Terms and Definitions

Grain structure

- Eutectic with AuSn₄ intermetallic precipitate
- Pb-free solder with intermetallic growth at solder pad

Solder Wetting

Cross-section of solder joint fillet
How do PWAs and Cable Harnesses Fail?

Soldering

Solder joint forms and hardens incorrectly:
- Part lead wiggled during hardening
- Not enough solder present
- Not enough heat present
- Soldered surfaces have excessive oxidation
- Joint is reheated repeatedly (reworked, touched-up)
- Gold plating on solder pad is too thick
- Solder dip pot becomes “contaminated” with trace metals

Internal structure of solder joint is affected:
- Solder grain coarsening increases rate of crack growth
- Interdiffusion between surfaces does not occur, interconnected zone is smaller
- Intermetallics at interdiffusion layer are too brittle.

Related Workmanship requirements:
- Spring-back of lead not allowed after soldering
- Dull, grainy appearance is a defect
- De-wetting is a defect
- A negative wetting angle is required
- A crack is a defect
- Stress lines are a defect
Example of Defects - Soldering

- Insufficient Solder
- Excessive Solder
- Bridging Solder
Example of Defects - Soldering

- Flux Residue
- Incomplete solder flow
- Burned Flux and flux residue
- Gold Embrittlement
How do PWAs and Cable Harnesses Fail?

Conformal Coating

Physical Feature:
- Thickness build up under part packages
- Thinning at sharp edges
- Lack of adhesion to surfaces
- Bubbles formed throughout cured material

Performance Impact:
- Polymer expands and overstresses solder joints
- Part lead is exposed to shorting hazard
- Moisture sink is created at delamination driving up risk of corrosion.
- Material may contain trapped ionics which cause low resistance shorts across surface

Related Workmanship requirements:
- Thickness requirements are defined
- Full and adhered coverage is required
- The amount of voiding allowed (bubbles) is limited and defined
Example of Defects – Polymeric Applications

- Bubbles in conformal coating
- Dewetting or lack of adhesion
- Scratch exposing conductors
- Staking interfering with leads
How do PWAs and Cable Harnesses Fail?

Harnesses

Physical Feature:
- Bare conductor wire is nicked exposing bare copper
- Too many wire strands are broken
- Crack in contact crimp barrel
- Splicing behind connector not staggered
- Connector pin not fully seated

Performance Impact:
- Wire conductor can corrode and fail electrically and/or mechanically
- Crimp connection weakens and fails
- Backshell doesn’t fit, rework forces increased stress on harness
- Contact backs out of place and connection fails

Related Workmanship requirements:
- Exposed copper not allowed on wire
- Limits set on number of broken strands
- Crimping calibration and in-process quality metric required prior to production
- Staggering of splices required
- Pin seating testing required

Physical Feature:
- Bare conductor wire is nicked exposing bare copper
- Too many wire strands are broken
- Crack in contact crimp barrel
- Splicing behind connector not staggered
- Connector pin not fully seated

Performance Impact:
- Wire conductor can corrode and fail electrically and/or mechanically
- Crimp connection weakens and fails
- Backshell doesn’t fit, rework forces increased stress on harness
- Contact backs out of place and connection fails

Related Workmanship requirements:
- Exposed copper not allowed on wire
- Limits set on number of broken strands
- Crimping calibration and in-process quality metric required prior to production
- Staggering of splices required
- Pin seating testing required
Example of Defects – Cables and Harnesses

- Typical Harness Installation
- Unacceptable Harness Installation
- Flux residue/corrosion byproduct
- Bent Connector Pins
Cable insulation stressed by compression of less than minimum bend radius

Single indenter crimp does not provide gas-tight crimp and leads to cracks in contact crimp barrel.
Will assemblies with Workmanship defects necessarily fail?

- Use of the materials and configurations in the Workmanship Standards and compliance to the Workmanship requirements provides excellent assurance that the hardware remain functional in missions which operate in mil-spec type environments (temperature, shock/vibe, humidity) for 15 years. *This may not be the case for environment extremes (cryogenic) and very long durations (>20 years).*

- Some Workmanship defects have been demonstrated to be associated with shorter service life through use and test. Some are from lessons learned feedback. Some are based on “best NASA practice”.

- Use of Workmanship requirements criteria for non-standard, new technology may not be technically value-added or improve assembly reliability.

Workmanship requirements are better at:

- Pointing out production lines which have not “mastered” the use of a mature interconnect technology.

- Reducing quality problems at a low level of assembly where it is less expensive to rework/repair.
Rework vs. Repair

Rework: process hardware to be in accordance with the drawing to correct a quality defect.
- Existing wording in NASA standards is awkward, mentions process allowed. Improved wording in J-STD-001ES
- Too much rework can reduce reliability. Care must be used to avoid unnecessary soldering touch-ups and part removals.
- Rework processes must be pre-defined to ensure too much is not normally allowed
- Must be recorded for process engineering feedback. Rework history may be reviewed if repair is needed.

Repair: resolve a quality defect by using a configuration that is not on the original drawing.
- May introduce non-standard configurations and materials
- May introduce collateral effects such as stress on nearby interconnects or parts
- Must be reviewed and approved prior to use
Standard Technologies:

• Do not require special approval prior to use
• Standard Workmanship rules apply

Examples:

• Wire terminals (soldered to boards, wires soldered to them)
• Surface mount solder joints: chips (0603 size and larger), gull wing
• Through hole joints for DIP packages, and radial leaded and axial leaded two-connection packages
• Conformal coating with uralane or parylene
• Staking of tantalum capacitors and wire runs
• Using cable ties
• Electrical check-out of harness assembly
• Rosin flux and 63/39 Sn-Pb solder
• Mil-spec connectors: 38999 (circular), 39012 (RF), 24308 (mini-D), 83513 (micro-D)
• Mil-spec wire and cable
• Wire-to-wire splicing
Non-Standard Technologies:

- Require special approval PRIOR to use
- Standard Workmanship rules MAY NOT apply

Examples:

- Column Grid Array and Ball Grid Array Attachments (soon to become standard)
- Modified commercial assemblies (COTS)
- Pb-free solder
- cPCI (solder tails) through-hole solder joints
- Flex cable
- >5 conductors in a crimp barrel
- Cryogenic applications
- Water soluble flux
The NASA Workmanship Standards have always been intended to be implemented by the operator and the inspector.

Historically design and processing decisions were made by technicians using experience and corporate knowledge. Miniaturization challenges this approach.

NASA Workmanship Standards capture some well known and accepted design and processing practices

- Some point out that a designer needs to provide the information
- Some state the design rule
Trend in the Workmanship Standards is to eliminate design requirements and avoid dictating process development. Workmanship Standards trending toward operator and inspector requirements only.

Examples of design requirements being eliminated:

- High strength copper alloy is required for wires gauge 24 and smaller.
- Line voltages shall be limited to socket contacts (for safety).
- Materials to meet NASA-Std-6001, flammability, odor, offgassing.
- Design of harnesses shall minimize RFI/EMI.
Examples of “reminders” to designers and process engineers that will be removed:

- Staking materials and **locations must be defined** on the engineering documentation
- Conformal coating material must be defined. Conformal coating materials with a fluorescent indicator are preferred
- Bond line requirements must be defined.
- Conformal coating maskant material and areas to be masked on PCBs must be defined
- Demoisturizing conditions for PWAs prior to polymeric applications (time, temperature, ramp rates) must be defined
- Harness design must plan use of heat-shrinkable sleeving, stress relief, methods for cable identification, preventing **mis-mating of connectors**
Design and Processing Requirements

Use of White Wires (aka Jumper Wires) is a design decision. Will their use enable performance and reliability? Workmanship looks at the solder joint quality and staking of the wire run >1”.

Use of White Wires (aka Jumper Wires) is a design decision. Will their use enable performance and reliability? Workmanship looks at the solder joint quality and staking of the wire run >1”.
New Technologies Need Refined Quality Criteria

When fully filled through-hole solder joints can be readily achieved then underfilled joints mark an un-optimized process and reduced performance margin.

But how much reduction in design margin? 10x to 9x? 3x to 1.2x?

If fully filled joints are readily achievable, quantifying margin is less interesting.
If fully filled joints are not readily achievable, quantifying margin is quite interesting.
Topics NOT COVERED by Workmanship Standards

Reliability prediction for standard or non-standard technologies, configurations, and materials

Operating procedures

Printed Circuit Board quality criteria and design rules

Electronic packaging and electrical harness design rules (except some which are going away)

Hybrid Microcircuit quality rules (e.g. wire bonding, die attach, hermetic seals, thick-film substrates)
The Workmanship Standards:

are Directed at operators and inspectors

Provide processing instructions (and some design rules)

Provide screening criteria for known defects for standard technologies, configurations, and materials

Remove units with defects from mission subsystems at a low level of assembly when it is less expensive to repair.

Require suppliers to seek prior approval for the use of non-standard technologies, configurations, and materials

Require suppliers to justify use of non-standard technologies, configurations, and materials with qualification data

Require suppliers to define relevant inspection criteria for non-standard technologies, configurations, and materials.
Part II: Workmanship Program Authority

How does NASA Headquarters provide for a common Workmanship quality baseline across the Agency?

How does that system maintain the baseline requirements and promote and explain the information?

Why do we use some NASA Standards and some Industry Standards?
NASA Workmanship Standards Program Authority

»NASA-STD-8739.1 Polymeric Applications

»NASA-STD-8739.2 Surface Mount Technology

»NASA-STD-8739.3 Soldered Electrical Connections

»NASA-STD-8739.4 Crimp, Cable and Harnesses

»NASA-STD-8739.5 Fiber Optic Terminations

»NASA-STD-8739.X Workmanship Implementation Requirements

»ANSI/ESD S20.20 Electrostatic Discharge Control

»IPC J-STD-001ES Space Applications Electronic Hardware Addendum to J-STD-001D Requirements for Soldered Electrical and Electronic Assemblies

All Programs and Projects must baseline these requirements and must flow them to all prime contractors and subcontractors. NPD 8709.20 describes the process for seeking relief. Authority for granting relief is NASA HQ OSMA.
Workmanship Standards Technical Committee (WSTC)

Mike Liu
Dept. QS
Tel: (650) 604-1132
Mike.Liu@nasa.gov

Charles Gamble
Marshall Space Flight Center
Tel: (256) 544-3353
Charles.L.Gamble@nasa.gov

Phil Zulueta
Jet Propulsion Laboratory
Tel: (818) 354-1566
Phillip.J.Zulueta@jpl.nasa.gov

Kirk Ketterer
Kennedy Space Center
Tel: (321) 861-8451
Kirk.A.Ketterer@nasa.gov

Alan Wallace
Dryden Flight Research Center
Tel: (661) 276-7531
Alan.P.Wallace@nasa.gov

Art Hayhurst
Langley Research Center
(757) 864-3352
Arthur.R.Hayhurst@nasa.gov

Daniel Hartgerink
Lyndon B. Johnson Space Center
Tel: (281) 483-1081
daniel.p.hartgerink@nasa.gov

Jeannette Plante
Goddard Space Flight Center
Tel: (301) 614-5944
jeannette.f.plante@nasa.gov

Tim White
Stennis Space Center,
MS 39529-6000
(228) 688-2390
Timothy.L.White@nasa.gov

Mike Capelety
NASA Glenn Research Center
Tel: (216) 433-5335
Michael.W.Capelety@nasa.gov

Program CoP Site
https://secureworkgroups.grc.nasa.gov/workmanship

Program Public Site
http://nepp.nasa.gov/workmanship

Program Executive
Brian Hughitt
HQ SMA
Tel: (202)-358-1572
brian.hughitt-1@nasa.gov

Program Manager
Jeannette Plante
Code 300
Goddard Space Flight Center
Tel: (301) 614-5944
jeannette.f.plante@nasa.gov

Monthly telecons
Shared documents for coordination
Shared lessons learned
Notices of ballot actions

Links to Standards
Application Notes
Links to Training Centers
Lists of Industry Standards
Shared lessons learned
POCs for WSTC
MEMORANDUM FOR HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

SUBJECT: Federal Participation in the Development and Use of Voluntary Consensus Standards and in Conformity Assessment Activities

Revised OMB Circular A-119 establishes policies on Federal use and development of voluntary consensus standards and on conformity assessment activities. Pub. L. 104-113, the "National Technology Transfer and Advancement Act of 1995," codified existing policies in A-119, established reporting requirements, and authorized the National Institute of Standards and Technology to coordinate conformity assessment activities of the agencies...

•Your agency must use voluntary consensus standards, both domestic and international, in its regulatory and procurement activities in lieu of government-unique standards, unless use of such standards would be inconsistent with applicable law or otherwise impractical. In all cases, your agency has the discretion to decline to use existing voluntary consensus standards if your agency determines that such standards are inconsistent with applicable law or otherwise impractical.

• (1) "Use" means incorporation of a standard in whole, in part, or by reference for procurement purposes, and the inclusion of a standard in whole, in part, or by reference in regulation(s).

(2) "Impractical" includes circumstances in which such use would fail to serve the agency's program needs; would be infeasible; would be inadequate, ineffectual, inefficient, or inconsistent with agency mission; or would impose more burdens, or would be less useful, than the use of another standard.
Process for Adopting and Maintaining Industry Standards for Workmanship

- Achieve Meets-or-Exceeds
- Training Programs, Supporting Standards, and Supporting Requirements
- Impact to Contracts and Quality Processes

Standards Lifecycle

- React to Cross-Industry Change Proposals
- Coordinate NASA-driven Changes

✓ Document Adoption
✓ Facilitate Use of New Document System
Status of Industry Standards for Workmanship as of January 2011

IPC-A-620xS Space Addendum (Cable/Harness):
Requirements gap analysis complete
NASA Centers rated gaps for risk
Preparing inputs to document coordination to close high risk gaps.
Developing Space-only training course.

IPC-A-620xS Space Addendum (Soldering):
NASA coordinating adopting policy (NPD 8730.5)
NASA coordinating implementation standard (gap filler, NASA-STD-8739.X)
IPC to offer two training courses (all quality levels, Space-only). NASA preparing Space-only course for IPC.

NASA-STD-8739.1 (Polymeric Applications):
Gap analysis in process
Polling stakeholders on appropriate VCS for content (if any).

ANSI/ESD S20.20 (ESD):
QAAR Audits
NASA-HDBK-8739.21

ANSI/ESD S20.20:
ESDA Standards activities

IPC J-STD-001xS:
IPC committee meeting coverage
There is no third party certification for compliance to NASA or VCS Workmanship Standards.

- **NASA** uses Program, Project, and contract requirements to **impose the Workmanship requirements**
- **NASA** uses NSC audits, Project quality engineering oversight, and DCMA to **verify supplier capability and ongoing compliance**

- **COTS suppliers** may offer compliance with VCS (e.g. IPC Standards) however the supplier’s interpretation of the requirements may not be NASA’s (e.g. use of IPC-STD-001 Class 3, or IPC-A-610, instead of J-STD-001ES or NASA-STD-8739.2)

- **DoD** contracts are not required to specify Workmanship requirements. DoD do not use supplier assessments or quality oversight that include Workmanship (except Army AMCOM). Suppliers offer what they use to military customers using their own interpretation of and adherence to the requirements.

Use of military subsystems or COTS subsystems may not meet NASA Workmanship requirements.
The Workmanship Standards Program:

Is delegated to the Program Manager from HQ OSMA (Technical Authority)

The Program Manager advises HQ OSMA on policy and technical issues relative to Workmanship

The Program Manager seeks inputs for establishing and maintaining Agency Workmanship Standards from the NASA Workmanship Standards Technical Committee

The Workmanship Program is mandated to adopt VCS’s where practicable

Two websites are used to disseminate and collect information on NASA Workmanship for the Program; one is secure and one is public.
Part III: Example of Workmanship Requirements

General
Polymeric Applications
Surface Mount and Hand Soldering
Cables and Harnesses
Fiber Optic Harnesses
Facilities, Tools, and Equipment

Temperature: 24±3°C (75±5°F), 30% to 70% Relative Humidity (RH)

Safety: chemical handling and storage, ESD wrist-straps are not human protection devices

Cleanliness: use and maintenance of production area for intended use, no food, control of foreign object debris (FOD), proper storage of hardware in-process and after processing.

For polymeric operations silicone operations must be segregated

Tool Calibration: per ANSI/NCSL Z540.1
Facilities, Tools, and Equipment

Light Intensity: a minimum of 1077 Lumens per square meter (Lm/m²) (100 foot - candles)

Magnification: simultaneous viewing in both eyes, accurate color rendering, shadowless, 1x to 10x magnification

ESD Control: language being changed to point to ANSI/ESD S20.20.
Personnel Training and Certification

Personnel: Operators, Inspectors, Level B Instructors

Certification: Guarantee employer makes that operator, inspector, instructor meets four minimum criteria:
- **Training** biennially,
- **Vision** biennially,
- **Competency,**
- **Continuous activity** <6 months inactivity

Local Trainer = Level B Instructor: Local trainers may be used but must be trained by NASA master trainer (at JPL or GSFC school). Course materials will be provided.

Courses: Students may take classes at NASA training centers or from a locally employed Level B instructor. Level B courses shall be made available for review and approval on a project-by-project basis.
Training for adopted VCS’s

IPC J-STD-001xS: Must use IPC-certified trainer. May use one of the two IPC courses available (modular version, or non-modular version). May use “home grown” course. Course material shall be made available for review and approval on a project-by-project basis.

ANSI/ESD S20.20: Must develop a local implementation plan (local = plant). Must train to local plan. ESDA generic courses, SATURN generic course not sufficient for operators, program monitors, instructors.

NASA-STD-8739.X to contain 16-page appendix to explain certification and training requirements.
Polymeric Applications

Polymer Material Processing: material storage, traceability records, batch mixing, witness sample (test specimen), hardness test

PWA preparation: cleaning, solvents, cleanliness test, demoisturizing, priming, masking

Staking: Tantalum capacitors, wire runs >1”. For all others if part is marked for staking on the drawing, must use 8739.1 requirements.
Polymeric Applications

Fastener Staking: applied to fastener, amount defined, thread locking, torque striping

Conformal Coating: brushing, spraying, vacuum deposit, dipping, pre-cure thickness measurement, bubbles, bridging, lead interference, UV inspection, FOD

Bonding: Bondline thickness must be defined by engineering, squeezout control, voiding must be defined by engineering, one lead free for thermistors
Encapsulation: (Potting) vacuum degass material, pre-cure inspection of coverage and bubbles, post-cure inspection for large voids, cracks, excess material

Quality Requirements Chapter:
Every NASA Workmanship Standard contains a requirements summary section for ease of use by inspectors. All “shall’s” are repeated from earlier sections.
Tools: Heat source selection and control (soldering iron, hot gas, radiant)

Materials: Eutectic solder, rosin flux, control of solder pot alloy quality

Cleaning: Clean bare boards, solvents, cleanliness test, demoisturizing

Soldering Prep: Solder paste slump and oxidation test, deposition methods (screen, stencil, syringe)
Machine and Hand Soldering

Soldering Prep: lead coplanarity, bending tools, thermal shunts, lead tinning, removal of thick gold, lead and PCB defects, shrink sleeve glass-bodied parts, pre-reflow lead position on solder pad, clearance of wire insulation

Part Solderability is required

Hand-soldered part installation: terminals, wrapped wires, connector contacts, termination on alternate side of part or both sides.

Reflow: Process run records, parameter control, post process cleaning
Machine and Hand Soldering

Solder Joint Geometry & Surface Appearance: Cracks, overhang/offset, blow holes, flux residue, stress lines, fillet height, coverage/wetting, excess material
Cable and Harness

Design Considerations: wire gauge selection, redundancy, contact assignments, routing, bend radius, use of splices, use of sealing plugs, potting connectors, signal isolation and use of EMI shielding, use of identifier marking and tags

Processing prep: use of full-sized mock-ups and wiring boards, protection of harness in-process and in storage.

Harness Assembly: Lacing cord stitches, tie wraps, dress of fabric braid layer, spiral wrap sleeving, heat shrinkable sleeving.
Cable and Harness

Cable and Wire prep: wire strip, damaged conductors and insulation, wire lay, insulation clearance, pre-tin for solder cups, cable jacket removal

Shield prep: ground connections, dress, and crimp rings

Crimp contacts: contact quality, crimp tool type and calibration, contact/conductor combinations, crimp quality check using pull test

Connector assembly: contact installation, sealing plugs, cable clamps, contact seating tests,
Splices: several types defined; solder and non-solder

Electrical acceptance testing: continuity, insulation resistance, dielectric withstanding voltage, for coax Voltage Standing Wave Ratio (VSWR), and time domain reflectometry (TDR), before and after installation
Fiber Optic Cables

Materials: solvents, selection and use of adhesives, traceability of materials, adhesive storage conditions, shelf life and pot life, chemical strippers

Personal protection: from glass slivers, eye protection, waste disposal

Cable prep: removal of moisture, cable jack and buffer preconditioning, cable layer removal processes
Fiber Optic Cables

Fiber end face prep: ferrule quality check, cleave fiber, polish, inspect, cleaning, protection with dust caps

Splices: only fusion type allowed for mission hardware, use strength members for stress relief, no loss of tensile strength in cable, optical time domain reflectometry (OTDR) and attenuation testing

Design considerations: cable bend radius, use of splice trays, microbending from cable ties, distinguish from RF cables with marking, cable exits coaxially behind connector for at least 2”.
Fiber Optic Cables

Quality inspection: magnification of 50X – 200X, 100X - 200X for end faces, cracks in end face, cracks in epoxy line, fiber pistoning, buffer or jacket shrink, ferrule quality check, cleave fiber, polish, inspect, cleaning,
Part IV: Electrostatic Discharge

• What is ESD?
• NASA technical standard (VCS)
• Local program responsibilities
• Resources
ESD Events are a sudden release of charge through the most readily available low-resistance path to ground. When this circuit runs through mission hardware, the resulting current can be damaging to electronics.

ESD control methods reduce charge build up and provide low-resistance circuit paths to ground that divert discharge currents away from mission hardware.
Electrostatic Discharge

Different discharge paths lead to different current/time/energy results. ESD control methods must be tailored to the event type.

![Graph showing discharge current and time]
Electrostatic Discharge

- **Human Body (HBM):** discharging event through the body and the part to ground.
- **Machine (MM):** discharge voltage through automated handling equipment or hand-tools and the part to ground.
- **Charged Device (CDM):** discharge into or out of a part due to charge accumulation within the part itself.

Examples of Sources of Threats (charge or discharge path)

<table>
<thead>
<tr>
<th>Examples of Sources of Threats (charge or discharge path)</th>
<th>HBM</th>
<th>MM</th>
<th>CDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work bench</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick and Place Machine</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Automatic Test Equipment</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Device package charging/discharging</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Mate/De-mate of harnesses</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>RF Signals (including cell phone signals)</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Refers to 38 standard procedures and test methods

- ANSI/ESD SP3.3 Verification of Air Ionizers
- ANSI/ESD S4.1 Work Surfaces Resistance
- ANSI/ESD STM4.2 Work Surfaces Charge Dissipation
- ANSI/ESD S6.1 Grounding
- ANSI/ESD STM97.1 Floor Materials Resistance
- ANSI/ESD S8.1 ESD Awareness Symbols
- ANSI/ESD STM9.1 Footwear Resistance
- ESD SP9.2 Foot Grounders Resistance
- ANSI/ESD STM11.31 Evaluating Shielding Bags
- ESD STM13.1 Soldering/Desoldering Hand Tools
- ANSI/ESD SP15.1 Gloves and Finger Cots
- ANSI/ESD S541 Packaging Materials
7.1 ESD Control Program Plan
The Organization **shall** prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:

- Training
- Compliance Verification
- Grounding / Equipotential Bonding Systems
- Personnel Grounding
- ESD Protected Areas Requirements
- Packaging Systems
- Marking
Note: These control methods are for HBM and MM events.
Provides a template for creating an S20.20-compliant ESD control program.

Training also needs to be developed that traces to the requirements in the control program.

Contact the Workmanship Program for slides which work with a 8739.21 program.
Deep Breath

in summary.....
Materials and configurations named in the Workmanship Standards are considered technologically standard and have demonstrated high reliability for a broad range of NASA missions and thus are mature.

The Workmanship Standards specify design, processing, and inspection requirements, which are relevant to the materials and configurations named, which ensure high quality hardware is supplied.

Suppliers are expected to perform manufacturing using controlled processes, which operators implement using established procedures, and which results in a product that is compliant with the Workmanship requirements.

Suppliers who use configurations and materials not named in the Workmanship Standards must establish that the resulting hardware will be reliable for the applicable mission and must establish, declare, and use relevant design, processing, and inspection requirements to assure that the final items have high quality.
The NASA Workmanship Standards Program:
Has as its Technical Authority, NASA HQ Office of Safety and Mission Assurance

Establishes Workmanship requirements which are applicable Agency-wide

Has a closed loop system via oversight and auditing by Project quality assurance personnel, DCMA, and the NASA Safety Center

The NASA Workmanship Standards:
Contain requirements that enable removal and repair of defects at a relatively low level of hardware integration when it is most affordable.

Work best as tools for Quality Assurance (rather than for reliability assessment) and for inspecting mature technologies.

Have a technology-limited scope. Quality rules for technologies outside of that scope must be developed, defined, and approved prior to use.