NEPP Electronic Technology Workshop 2011

Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

Jean-Marie Lauenstein

Radiation Effects and Analysis Group NASA Goddard Space Flight Center Greenbelt, MD 20771 USA

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 201

Acknowledgments

Government:

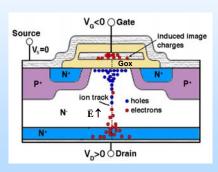
- Defense Threat Reduction Agency
- NASA/GSFC Radiation Effects and Analysis Group
 - Ken LaBel, Ray Ladbury, Hak Kim, Anthony Phan, Megan Casey, Alyson Topper, and Tim Irwin
- NASA/JPL
 - Leif Scheick, Steve McClure
- NAVSEA, Crane
 - Jeffrey Titus
- Naval Research Laboratory
 - Dale McMorrow, Stephen Buchner

University:

- University of Maryland
 - Neil Goldsman, Akin Akturk, and Siddarth Potbhare
- · Vanderbilt University
 - Ron Shrimpf, Ken Galloway, Robert Reed, and Bob Weller

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011

Acknowledgments

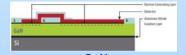

Industry:

- **International Rectifier**
 - Sandra Liu, Max Zafrani, and Paul Sherman
- **SEMICOA**
 - Brian Triggs, Mike Gauthier, Ahmed Iftikhar, Brian Gauthier, and John Parks
- **STMicro**
 - Albert Ouellet, Géraldine Chaumont, Hervé Duperray, Patrick Briand
- **Texas Instruments**
 - Jim Salzman, Bruce Holcomb
- **Vishay Siliconix**
 - Dave MacDonald, John Demiray, and Arthur Chiang

Introduction

- Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs
- SEGR is complex, making rate prediction difficult
- **SEGR** mechanism has two main components:
 - Oxide damage
 - · Reduces field required for rupture
 - Epilayer response
 - · Creates transient high field across the oxide

NEPP Focus



- Develop reliable SEGR rate prediction capability
 - Enhance understanding of failure mechanisms
 - Support test method revision/guideline development
 - Develop a SEGR rate prediction tool
- Evaluate alternative power devices for space applications
 - **New technologies**
 - **New suppliers**

Trench topologies

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

To be published on nepp.nasa.gov web site.

FY11 SEGR Modeling and Power MOSFETs (Continuation)

Description:

This subtask is part of a continuing effort to improve and verify prediction techniques for radiation effects through the development of software packages, with emphasis on Single Event Effects (SEE). This subtask focuses on the development of a first-order physics model of Single Event Gate Rupture (SEGR), with emphasis on application to power MOSFETs. Currently, no SEGR tool exists.

Emphasis in FY11 will be on bounding the on-orbit SEGR failure rate. In conjunction, the effect of ion species on SEGR susceptibility will be studied. These efforts will lead into the development of an MRED-based rate-prediction tool.

In addition, the suitability for space applications of alternative power devices will be evaluated, to include both new suppliers and new technologies such as SiC.

Note: Sister task at JPL looking at GaN power devices

Modeling:

- Bound the upper-limit of on-orbit SEGR failure rate
- Validate method of SEGR determination in TCAD models
- Investigate ion species effects

Test Vehicles:

- Vishay TrenchFETs: 12V, 200V pMOS; 250V nMOS
- STMicro rad-hard power MOSFETs cont'd partnership
- SemiCOA rad-hard 450V nVDMOSFET
- Int'l Rectifier IRH7250 Cree SiC power MOSFET (1200V)
- Micross SiC JFET, Schottky diode (1200V) - TranSiC NPN BJT (1200V)
- Test Method Development: - Support ASTM Method 1080 development

Deliverables:

-Quarterly and test reports

-Summary report due Sep 11

- Support MIL-STD 750E TM1080 revision

Schedule/Costs:

Subtask lead: J.-M. Lauenstein

R. Schrimpf, L. Scheick

Co-ls: M. Casey, N. Goldsman, S. Liu, J. Titus, R. Ladbury

NASA and Non-NASA Organizations/Procurements:

Beam procurements: TAMU, Berkeley Partners: JPL, NSWC, University of Maryland, Vanderbilt
University, Cree, IR, Micross, Semicoa, STMicro, TI, Vishay

Sister task at JPL looking at GaN power devices.

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011

To be published on nepp.nasa.gov web site.

Goals

- Evaluation of on-orbit SEGR vulnerability
 - Relative importance of SEGR mechanisms:
 - Ion-species effects (as opposed to linear energy transfer (LET))
 - Substrate charge effects (relative to epilayer, oxide)
 - Upper bound on SEGR failure rate for a given device SEGR response curve
- Validation of TCAD SEGR simulation method
- Evaluation of alternative power devices for space applications
 - Commercial trench MOSFETs
 - Radiation hardened VDMOS from new suppliers
 - SiC power devices
- SEGR/SEB test method evaluation and revision:
 - Provide feedback on JEDEC/ASTM revisions of Standards and Guidelines.
 - Continue collaboration with ESA on SEGR test and qualification methods.

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

To be published on nepp.nasa.gov web site.

_

Goals Highlighted in This Talk

- Evaluation of on-orbit SEGR vulnerability
- Relative importance of SEGR mechanisms:
 - Ion-species effects (as opposed to linear energy transfer (LET))
 - Substrate charge effects (relative to epilayer, oxide)
 - Upper bound on SEGR failure rate for a given device SEGR response curve
- Validation of TCAD SEGR simulation method
- Evaluation of alternative power devices for space applications
 - Commercial trench MOSFETs
 - Radiation hardened VDMOS from new suppliers
 - SiC power devices
- SEGR/SEB test method evaluation and revision:
 - Provide feedback on JEDEC/ASTM revisions of Standards and Guidelines
 - Continue collaboration with ESA on SEGR test and qualification methods.

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

To be published on nepp.nasa.gov web site.

Expected Impact to Community

- Minimize power MOSFET derating penalty (maximize performance) through better failure rate prediction
 - Benefit to designers AND suppliers
- Strengthen existing and foster new relationships with industry
 - Expansion of power device options available for insertion into space applications
 - Development of products that meet the needs of spacecraft and instrument designers
- Streamline test and qualification methods
 - Foster agreement through collaborative efforts

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011

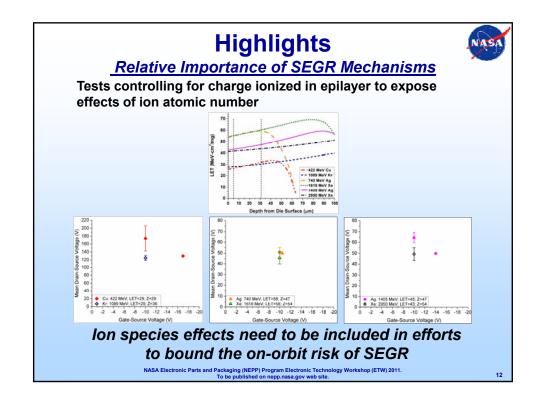
To be published on peop page gov web site.

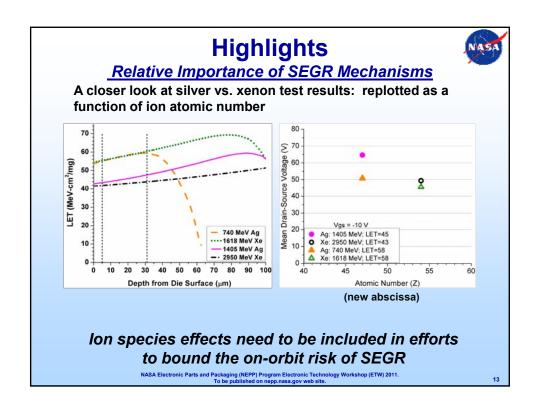
9

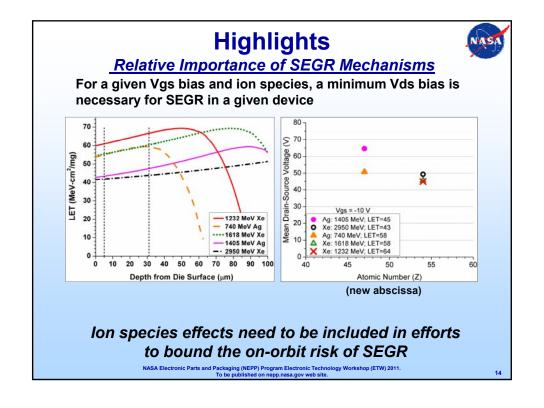
Status/Schedule

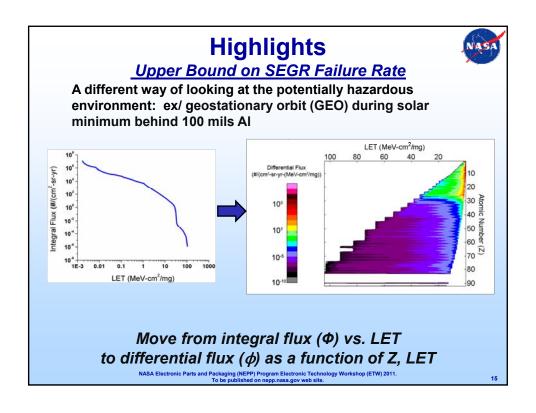
- Evaluation of on-orbit SEGR vulnerability
 - Determined that ion atomic number cannot be neglected when considering SEGR failure rate prediction. (FY11 Q1-Q3)
 - Developed method to bound the SEGR failure rate:
 - Based on operation at upper limit of safe-operating area (SOA) defined from any given test data. (FY11 Q2-Q3)
- Validation of TCAD SEGR simulation method:
 - Determined Titus-Wheatley expression for the critical oxide field based on ion atomic number is a valid method to determine when SEGR has occurred in VDMOS SEGR simulations. (FY11 Q1-Q2)
- Evaluation of alternative power devices for space applications
 - Completed initial SEE evaluation of Vishay commercial trenchFETs.
 Initial total ionizing dose (TID) evaluation of p-types completed, n-type pending. (FY11 Q1-Q4)
 - Completed initial SEE evaluation of Semicoa radiation-hardened SCF9550 450V nVDMOS. (FY11 Q1)
 - Continued SEE evaluation of STMicro radiation-hardened STRH100N10 100V nVDMOS. (FY11 Q1)
 - Completed initial TID evaluation of Cree SiC 1200V nVDMOS. (FY11 Q3)

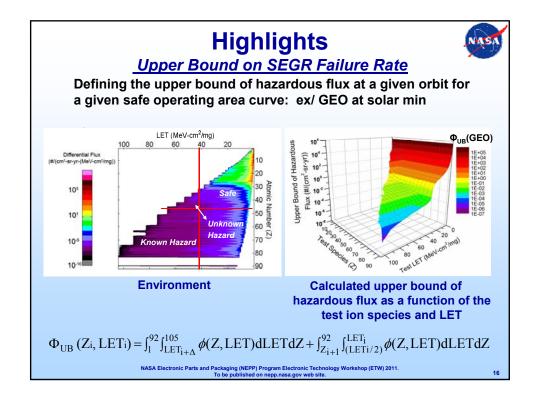
NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

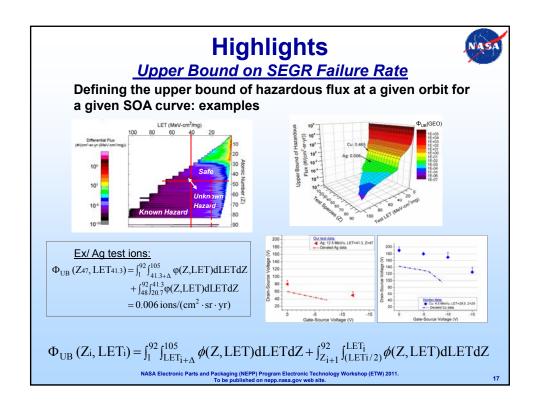

To be published on nepp.nasa.gov web site.


Status/Schedule




- SEGR/single-event burnout (SEB) test method evaluation and revision
 - Test method refinement: Continue to provide input and edits to draft revision of MIL-STD750E TM1080 for JEDEC JC13.4 meetings. (FY11 Q1-Q4)
 - SEGR/SEB test method evaluation:
 - Participated in multi-agency/organization evaluation of penetration range and species effects on SEB failure threshold. (FY11 Q1)
 - Participating with IR, NSWC, and NRL in two photon absorption (TPA) laser mapping of SEB response vs. depth of charge ionization (FY10 Q3, FY11 Q3)
 - Pursuing TPA laser tests of SEGR with IR, NSWC, and NRL. (FY10 Q3, FY11 Q3)
 - Continue data sharing with ESA to aid their studies of energy straggling effects. (FY11 Q1-Q4)

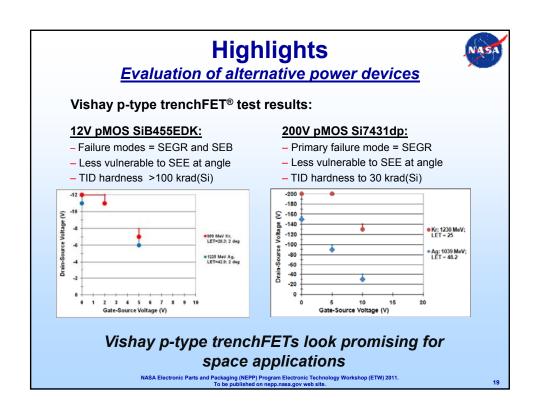

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011

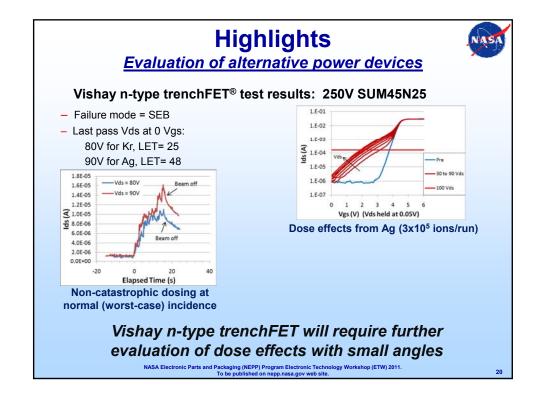


Highlights Upper Bound on SEGR Failure Rate

Upper Bound on SEGR Failure Rate Defined From Φ_{UB} :

Rate_{UB} =
$$\Phi_{\text{UB}} \cdot \mathbf{N} \cdot \mathbf{A} \cdot 4\pi (1 - \cos(\theta)) \cdot f$$


- N = # devices to be flown
- A = SEGR cross-section
 - Gate area of die
- θ = max off-normal angle of incidence of SEGR vulnerability
- f = off-state duty cycle



Current form is overly-conservative.

Next step: Refine inclusion of angular effects

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 201

Interpreting Space-Mission LET Requirements for SEGR in Power MOSFETs

Jean-Marie Lauenstein, Student Member, IEEE, Raymond L. Ladbury, Member, IEEE, Neil Goldsman, Hak S. Kim, David A. Batchelor, Member, IEEE, and Anthony M. Phan IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

Current Single Event Effects Compendium of Candidate Spacecraft Electronics for NASA

Martha V. O'Bryan, Kenneth A. LaBel, Jonathan A. Pellish, Dakai Chen, Jean-Marie Lauenstein, Cheryl J. Marshall, Ray L. Ladbury, Timothy R. Oldham, Hak S. Kim, Anthony M. Phan, Melanie D. Berg, Martin A. Carts, Anthony B. Sanders, Stephen P. Buchner, Paul W. Marshall, Michael A. Xapsos, Farokh Irom, Larry G. Pearce, Eric T. Thomson, Theju M. Bernard, Harold W. Satterfield, Alan P. Williams, Nick W. van Vonno, James F. Salzman, Sam Burns, and Rafi S. Albarian

2010 IEEE RADIATION EFFECTS DATA WORKSHOP PROCEEDINGS

- Evaluation of the 0.75 Vds derating factor for VDMOS suggesting it is reasonable for avoiding on-orbit SEGR when applied to higher-energy accelerator test data;
- Report of SEE test results on the TI NexFET™ CSD16403Q5A

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

To be published on nepp.nasa.gov web site.

21

FY11 Presentations

- J.-M. Lauenstein, et al., "Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs," to be presented at the 2011 IEEE Nuclear Space Radiation Effects Conf., Las Vegas, NV.
- S. Liu, et al., "Effects of Ion Species on SEB Failure Voltage of Power DMOSFET," to be presented at the 2011 IEEE Nuclear Space Radiation Effects Conf., Las Vegas, NV.
- S. Liu, et al., "Probing the SEB Sensitive Depth Using a Two-Photon Absorption Method," to be presented at the 2011 IEEE Nuclear Space Radiation Effects Conf., Las Vegas, NV.

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

To be published on nepp.nasa.gov web site.

Plans (FY11/FY12)

- SEGR modeling
 - Refine calculation of upper bound of SEGR failure rate:
 - Simulation-based angular dependency studies with test validation.
 - TPA laser studies to examine SEGR in absence of direct oxide damage from the heavy ion.
 - Begin development of a Monte-Carlo-based SEGR response model for failure rate calculations.
- Testing
 - Cree SiC 1200V VDMOS, SEE testing
 - Vishay 250V nMOS TrenchFET®, TID testing
 - Semicoa 100V pVDMOS, SEE testing
 - Micross SiC 1200V JFET, SEE and TID testing
 - TranSiC SiC 1200V NPN BJT, SEE and TID testing
 - EPC GaN 200V FET, SEE and TID testing
 - Continue/foster relationships with suppliers of power devices potentially suitable for space applications
- Continue support of JEDEC/ASTM revisions of Standards and Guidelines

NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW) 2011.

To be published on nepp.nasa.gov web site.