Current Spike Investigation for NAND Flash Memory

Timothy R. Oldham¹, Farokh Irom², Mark Friendlich³, Duc Nguyen², Hak Kim³, Melanie Berg³, and Kenneth A. LaBel⁴

1. Dell Systems Federal Government
 8270 Willow Oaks Corp. Drive, Fairfax, VA 22031
2. NASA Jet Propulsion Laboratory
3. MEI Technology, Inc.
4. NASA GSFC

Supported by NASA Electronic Parts and Packaging Program (NEPP)

SEE Symposium, April 12-14, 2011

Outline

- Introduction
- Experimental Plan
- Experimental Results
- Discussion
- Conclusions
Background

Micron 4G
Dynamic Read
10^7 Ta ions/cm^2
No failure

Irom et al., IEEE TNS, 54, 2547 (2007).

Background

Samsung 8G
Dynamic Read
10^7 Au ions/cm^2
Failure

Irom et al., IEEE TNS, 57, 266 (2010).
Calculated Event Rate In Space

- Tests were conducted with 10^7 Au ions/cm²
- Flux in GEO orbit at LET of Au is 1 particle/cm² every 7200 years
- Event rate is about 1 per 10^6 particles/cm²
- Estimated rate in space is \sim1 per 7×10^9 years, assuming present conditions the whole time
- Interval is greater than age of earth, and about half interval since the Big Bang
- Even if we had duplicated these events on the ground, it would not make them real in space!

Joint Experiment Plan

- Use parts reported to have current spikes
- Duplicate beam conditions from experiments where spikes were reported
- Use NASA LCDT, rather than alternatives
- Use three test modes: Static (with bias), Dynamic Read, R/E/W
- Test was done at TAMU using 15 MeV/nucleon tune
Experimental Results

- On 38 beam runs, observed 52 high current events
- None less than 1 sec in duration, most 10’s of seconds, or minutes
- 48 of 52 had stair-step structure characteristic of micro-latches
- Remaining four events appear to have been due to bus contention
- Did not observe any events 300-400 msec in duration

Summary of Results
Samsung 8G

- Dynamic Read mode
- Xe ions
- No failure

Current (mA)

Time (sec)

Samsung 8G

- Static mode
- Xe ions,
 - Erase, write functions both failed

To be presented by Timothy R. Oldham at the 2011 Single Event Effects (SEE) Symposium, April 12-14, 2011, La Jolla, CA.
Micron 4G NAND

- Xe ions
- Dynamic Read
- No failure

Bus Contention

Micron 4G
Dynamic Read
2x10^6 Xe ions/cm^2
SEFI
OK after PC
Micron 4G NAND

Micron 4G
Au ions,
Dynamic Read
Write, Erase
both failed

Current (mA)

Time (sec)

Micron 4G NAND

- Xe ions
- R/E/W
- Failure
- No high current

Time (sec)
Samsung 4G

Xe ions, R/E/W
No Failure

Xe ions, R/E/W
SEGR Failure

Micro-Latches in Combinational Logic

Micro-Latches in Intel 386 Processor

Micro-Latches in SDRAM

C. Poivey et al., 512M SDRAM Test Report
http://radhome.gsfc.nasa.gov
Conclusions (I)

- Conducted experiment designed to duplicate current spikes reported by Irom et al.
- Observed 52 high current events—48 LSELs (micro-latches) and 4 apparent cases of bus contention
- Neither bus contention nor LSEL is unique to flash memory—3 other examples cited, where test vehicle had no charge pump
- Showed example of failure without high current
- Showed examples of high current without failure
- Showed example where failure caused high current, not the other way around

Conclusions (II)

- Even if failure and high current correlated, no proof high current caused failure
- Failed to duplicate “typical” 300-400 ms current spikes
- Four short bus contention events in 38 beam runs, not ten events in one run, and pulse widths are different
- Even if current spikes had been observed in ground test, rate in space would be zero