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Why Study Solid-State Recorders? 

• Solid-state recorders (SSRs) perform a critical mission function 
– Allow efficient data return and mission continuity when transfer impossible 

• SSRs use very large amounts of commercial memory 
–  Commercial memories have >30x density of radiation hardened memories 

• Now dominated by Synchronous Dynamic Random Access Memory (SDRAM) 

– Each SSR is an on-orbit test of up to thousands of state-of-the-art-memory die 
• Increases likelihood of seeing new or rare events and failure modes 
• May allow exploration of part-to-part- variation. 

•  Commercial memory chips have high sensitivity to single-event effects (SEE) 
– High sensitivity + high density→validate radiation-environment and SEE rate models 
– Ubiquity of SSRs allows comparison of operation in many environments 

• Because SSRs use commercial memory, their technology changes rapidly 
– Do hardening techniques of the past still work? 
– Have new units operated as did their predecessors? 

• Memory is the gateway drug for commercial electronics 
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Missions for 2002 Study 

• Original study 
– >2 solar cycles 
– >60 missions/experiments 
– SRAM (up to 1 Mbit) 
      (static random access     
       memory) 
– DRAM (up to 16 Mbit) 

• Update adds data for 
– Two published studies 
– 5 missions 
– 64-512 Mbit SDRAM 

Completes 24th Solar Cycle 
– Environments from low-

Earth orbit (LEO) to 
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Guideline 1: Know your Mission Environment  
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Guideline 2: Know Your Requirements 

• Is application a 1 TB data recorder or a 10 Gbit scratchpad? 
– Error Detection and Correction (EDAC) options and available architectures 

(e.g., for interleaving bits in data words) very different 
• What is important? 

– Is bit-error rate really important for video data? 
– Do you care if <<1% of science frames are lost due to recoverable Single-Event 

Functional Interrupt (SEFI)? 
– If SEU are single-bit, and block errors are >100x rarer, is single-bit correction 

acceptable in lieu of double-bit correction? 
– How long does data stay in memory? 

• What are the physical requirements? 
– Memory size, speed, physical dimensions, power consumption, etc. 

• What are the performance requirements? 
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Guideline 3: Know Your Device SEE Response 
• Is response simple or complex? 

– Does device exhibit nonrecoverable SEFIs, stuck bits, multi-bit errors? 
• Double Data Rate (DDR2) SDRAM much more complex than 16 Mbit DRAM 

• How well are rates known?  
– How large are statistical errors (e.g., Poisson fluctuations)? 
– How well is part-to-part and/or lot-to-lot variation bounded 

16 Mbit DRAM SEU (1995) 
SEU = single-event upset 
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Guideline 4: Consequences & Remediation 
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Radiation Risk Consequence  Remediation 
Impact to  
design 

Destructive 
Single-Event 
Latchup (SEL) 

Permanent loss  of 1 die in memory array 
Redundant die in array such that  
probability of meeting End-of-Life  
(EOL) requirements is high 

Severe 

Nondestructive  
SEL 

Loss of all data on affected die/stack Requires power cycle of affected  
die/stack for recovery 

Moderate  
to severe 

Single-Event  
Functional  
Interrupt (SEFI)  
requiring power  
cycle 

Loss of functionality on affected die; Loss  
of most or all data on affected die/stacks 

Requires power cycle of affected  
die/stack for recovery; EDAC may  

Moderate  
to severe  

Recoverable SEFI 

Temporary loss of functionality; Loss   
of large amounts up to all data on 
affected die.   

EDAC + Organzation of data words  
across independent die; FPGA  
programmed w/ ability to refresh  
mode registers/reset device 

Moderate 

Stuck Bits 
Uncorrectable loss of data integrity in  
affected bits/symbols 

EDAC can correct incorrect bit, but  
capability permanently degraded Minor 

Multi-Bit Upset 
(MBU) 

Correctable loss of data for multiple 
bits in same word 

EDAC must have sufficient power to  
correct w/c MBU (usually no worse  
than w/c SEFI) 

Moderate 

Multi-Cell SEU Multiple bits upset, but in different words EDAC Minor 
SEU single-bit upset EDAC Minor 
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Guideline 5: Know Options for SSR Hardening  

• SSR hardening relies on a multi-tiered approach 
– First line of defense is conservative SEE testing 

• Testing goal #1: Find a part with SEL rate as close to 0 as possible 
• Testing goal #2: Ensure rate for SEFI requiring power cycle as close to 0 as possible 
• Testing goal #3: Get sufficient data to BOUND rates for all SEE modes 
• Allow for part-to-part variation in SEE rates—estimate rates conservatively 

– Second tier is Error Detection and Correction (EDAC) 
• EDAC code calculates error correction bits from values of data bits and can detect and 

correct errors up to some maximum size if discrepancies are found. 
• Other mitigations needed to ensure worst-case error does not exceed EDAC capability 

– Other mitigations 
• Goal is to keep errors from overwhelming EDAC—either all at once or cumulative 
• Interleave words across multiple die (die width is a good “symbol” length), so that even 

if all bits on a single die corrupted, EDAC can still correct data words 
• Scrub entire SSR periodically so probability of errors accumulating in any period small 

• For small memory applications interleaving may not be possible 
– Triplicate voting may be more efficient. 
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Guideline 6: These are Commercial Parts  

• Product life-cycles are short (~18 months) 
– Procuring test lot, radiation testing, qualification, etc. can leave little time to 

procure part before it becomes obsolete or is revised. 
– A revised part means starting all over again. 

• Lot-traceability may not be possible 
– Need to ensure test sample is representative of flight parts some other way 

– Part-to-part variation in SEE response may be larger than for MIL or space parts 
– Threat of counterfeit parts is real unless source is trusted 

• Commercial memories are too complicated to test completely 
– Cannot test all possible operating-mode combinations 
– Parts exhibit a variety of disruptive error modes (e.g. SEFI, SEL) 
– Lack of traceability means should test larger sample; may not be possible 

• These factors argue for significant margin when estimating SEE rates 
– Needs to be remembered by designer as well as SEE analyst—if rate drives design 

and increases cost, pushing back may be fruitful 
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Changes Since 2002 I: Memories 

• SEL performance has been variable, but improved since 2008 
• SEU—per bit SEU rates remain very low (~10-12-10-11 per bit day) 
• Multi-bit upsets usually due to control logic or read errors due to interleaving 
• Stuck bits have been manageable (<10-5 per device day) 
• SEFIs and block errors have accounted for increasing proportion of errors 

– Large blocks of multibit errors increase importance of powerful EDAC 

For LRO’s Data Storage  
Boards, 14 events accounted 
for >90% of data hits 

Lunar Reconnaissance Orbiter (LRO) 
Terrestrial SEE tests 
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Changes Since 2002 II: Recorders 

• SDRAMs have dominated bulk data storage applications since 2002 
– Most SSRs have used Elpida 256 Mbit or 512 Mbit SDRAM 
– First DDR devices flown in 2013 (Delay-Locked Loop (DLL) disabled) 

• Data words are larger—increased from 16 bits to 32 bits 
– Encourages use of wider SDRAMs, requiring more powerful EDAC or degrading margins 

• DRAM die often stacked 4-8 in a package to save board real estate 
– Since die share a common power supply, cannot cycle power to individual die 

• If SEFI or nondestructive SEL require power cycle all data on stack lost. 
• Note that use of FLASH or other nonvolatile eliminates this problem 

• Mitigation has become more sophisticated 
– Greater symbol/word width favors multi-symbol error correction 
– SEFI requiring a power cycle for recovery favor sparser interleaving 

• Recorder performance  
– Most recorders cannot utilize full speed of DDR2/3 devices. 
– Mitigations available continue to be effective—no data lost in studies reviewed 
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Changes Since 2002 III: Flight Data 

• Schaefer et al.* Looked at SEU in 64, 
128 & 256 Mbit SDRAMs 

– Space weather effects difficult to discern 
– Effect of solar cycle evident 
– Predicted:Observed varies from 1.26-10.2 
– No trend with technology 

• GSFC looked at data storage boards 
(DSB)  for LRO  

– Elpida 512 Mbit SDRAM 
– >90% of errors occurred in Block errors 
– Predicted SEU rate ~6x observed—

estimated with good statistics 
– Poor Statistics for SEFI and block errors, 

so prediction overestimates rate >100x 
– CREME96 estimates rates adequately up 

to 512 Mbit generation 
 

Only 2 published studies comparing on-orbit and predicted SEE rates 

*IEEE Data Workshop 2009 

 

Error Mode
Predicted 
#/dev-day

Observed 
#/dev-day

SEU 1.54E-02 3.10E-03
Logic Errors 1.00E-02 1.70E-04
Block Errors 3.50E-03 3.30E-05

SEFI <0.000008 <6.4E-6
Stuck bits 

(permanent) <1E-5
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SSRs of The Future 

• Near future will use DDR2/3/4 
– 2-4 Gbit die, >2 GHz operation possible 

– Challenges 
• Too fast for radiation hardened controllers—can run <100 MHz w/ DLL disabled 
• Increased width of part and word length may require sophisticated EDAC 
• Common VDD of stacked die make recovery from SEFI more challenging 

• Improved endurance, retention, TID and SEE performance make FLASH viable 
– Nonvolatile storage a significant advantage and >density than SDRAMs 
– Challenges 

• Too slow for many applications 
• Page Erase and other operational characteristics inconvenient in some applications 
• Susceptible to hard SEE failure during Write and Erase operations 

• Whatever comes next??? 
– Nonvolatile—top candidates are resistive RAM & Spin-Torque Transfer RAM 

• Hope: >DDR4 speed, >FLASH density, memory cell likely hard to SEE 
• Challenges will come from support/control circuitry  
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Additional Guidelines And Advice 

• Guidelines and hardening techniques from 2002 still hold well 
• Additional trends worth noting 

– Continued consolidation of commercial memory manufacturers 
• Limits choices and adds another risk for procurement 

– Increasing prevalence of SEFI/block errors vs. SEU 
• Some applications may get by with limited EDAC 
• Some may really need multi-symbol correction 
• Need to understanding application and conservatism of rate estimates 

– SEFI very disruptive to testing, so rates estimated with poor statistics 

– Increasing complexity of memory makes every test application specific 
• Need to understand application if test is to be valid 

– For DDR2/3, SEU cross section does not scale with effective LET 
• Introduces more uncertainty into rate estimation 
• SEFI/ block errors still scale, but estimation poor due to poor statistics 
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Conclusions 

• Conventional Guidelines and hardening techniques for SSRs still hold 
– Although parts have changed—they are still commercial and subject to same 

market forces and risks 
– Hardening techniques work because they address consequences of SEE modes 

• Permanent failure of entire part (e.g. single-event latchup, burnout) 
• Permanent partial failure of part (e.g. stuck bit) 
• Unrecoverable loss of functionality requiring power cycle (SEFI) 
• Large blocks of data lost (block error) 
• Small amount of data lost (single-event upset) 
• Effects of any single error confined to a single die 
• Usually ensure at least 1 worst-case error correctable (data loss + functionality) 

• Trends such as stacking, wider part and longer data words pose challenges 
– Hardening techniques can be adapted to ensure data remain secure 

• Hardening will also work for any new technologies that come along 
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