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 Scintillation breakdown and self-
healing in tantalum capacitors

 Failures as Time Dependent 
Dielectric Breakdown (TDDB)

 Weibull Grading Test (WGT)
 Surge Current Test (SCT).
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 Failures in Ta capacitors occur typically either under steady-state 
operating conditions, or at the first power turn-on.

 To reduce the probability of the first type of failures, capacitors are 
screened/qualified by WGT.

 SCT is used to mitigate the risk of the second type of failures.

What are these tests, how effective they are, and what 
can be done to improve the efficiency?
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 Scintillations are local momentary breakdowns 
terminated by self-healing.

 SH occurs almost instantaneously and is due to 
additional electrochemical oxidations of Ta in the 
electrolyte (sulfuric acid).
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 Breakdown margin reduces substantially with 
rated voltage, VR.

 SH is important to assure reliability of the parts, 
but it is not a panacea because of the pressure 
build-up due to H2 generation.

 Breakdown margin reduces substantially with 
rated voltage, VR.

 SH is important to assure reliability of the parts, 
but it is not a panacea because of the pressure 
build-up due to H2 generation.

0

1

2

3

4

5

6

7

0 25 50 75 100 125

VB
R

/V
R

rated voltage, V

Wet Tantalum Capacitors

standard, M39006
high volumetric efficiency

0

1

2

3

4

5

6

7

0 25 50 75 100 125

VB
R

/V
R

rated voltage, V

Wet Tantalum Capacitors

standard, M39006
high volumetric efficiency

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20

vo
lta

ge
, V

time, sec

04005 wet Ta capacitors

210uF 125V, 2.5mA 

870uF 60V, 10mA 

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20

vo
lta

ge
, V

time, sec

04005 wet Ta capacitors

210uF 125V, 2.5mA 

870uF 60V, 10mA 



Self-Healing in MnO2 Ta CapacitorsSelf-Healing in MnO2 Ta Capacitors

5

 SH is due to local overheating of MnO2 and its 
transformation to a high-resistive Mn2O3, thus isolating 
the defective area of Ta2O5.

 Tantalum can oxidize by oxygen released from MnO2.
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 Although the breakdown margin decreases with VR, it remains above ~2.
 Scintillations were damaging in ~30% cases.
 The larger the nominal capacitance and the lower the equivalent series 

resistance, ESR, the greater the probability of damage.
 SH is a benefit of MnO2 parts, but scintillations should be considered as 

failures during screening and qualification.
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 Contrary to MnO2 capacitors, where ignition is possible due to the  
exothermic reaction of oxygen that is emitted by MnO2 with Ta, 
polymer capacitors do not ignite.

 For this reason, manufacturers “suggest” derating to 0.8VR compared 
to 0.5VR that is “recommended” for MnO2 capacitors.
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 Preliminary results show that all polymer capacitors failed in a short 
circuit mode – no self-healing.

 There are other concerns that need to be addressed before using 
polymer capacitors in high-rel applications (e.g. effect of humidity).
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 Scintillations during life testing should be considered as failures.
 Life test results can be simulated using the TDDB model, but 

parameters should be adjusted. 
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 Thermochemical model (TCM) of TDDB:

 Time-to-failure, TTF, can be calculated based on distribution of VBR:
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H -energy for ions displacement,  - field acceleration parameter, to - time constant.
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experiment

Simulation at
=40.2V, =5.8
H=1 eV, t0=10-3 hr
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Infant Mortality FailuresInfant Mortality Failures

35V capacitors with characteristic VBR=95V
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 Experimental distributions of TTF for chip Ta capacitors in most cases 
can be described as 2-parameter Weibull function with  < 1 

 Majority of failures can be considered as infant mortality (IM) failures. 
Monte-Carlo simulation of VBR 

distributions at different 
Times to failure calculated based 

on TDDB model

 At the level of VBR that is typically observed for tantalum 
capacitors (5 to 20), simulations show that all failures, up to the 
end of life, are defect related IM failures.

 At the level of VBR that is typically observed for tantalum 
capacitors (5 to 20), simulations show that all failures, up to the 
end of life, are defect related IM failures.
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Weibull Grading TestWeibull Grading Test
 WGT is a combination of two tests: burn-in (screening to remove IM 

failures) and reliability qualification (to assess the failure rate, FR).
 If < 1 and  can be monitored during testing, then the test can be 

stopped when the necessary  is achieved. 
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Original notion [Didinger’64]: “to pay for only as 
much grading as needed, without the risk of getting 
too little or overpaying for too much reliability”. 
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 If all failures are due to IM, then any lot can be screened out to 
as high FR level as necessary.

 If all failures are due to IM, then any lot can be screened out to 
as high FR level as necessary.
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WGT ConditionWGT Condition
 WGT condition per MIL-PRF-55365: 

oAt 85 oC for 40 hr and voltage from 1.1VR to 1.53VR.
oA failure is defined as a blown 1A or 2A fuse.
oFailures calculated at 2 hr and 40hr of testing.
oFR is calculated using an empirical equation obtained ~ 40 years ego:

 Considering that at V = VR accelerating factor, AF, is equal to 1:

B is the voltage acceleration constant (B = 18.77249321???)

 Life test at 85 oC can confirm  ~1%/1000hrs which is more than 100 
times greater than is required for T-grade capacitors.

)exp( uBAF  1
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Vu
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
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 Long-term reliability is determined by a 40-hr accelerated testing! Long-term reliability is determined by a 40-hr accelerated testing!
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WGT ProblemsWGT Problems
 Two groups of problems for FR assessment 

using WGT: testing and calculations.
 Problems with test conditions:

o Verification of contacts in fixtures.
o Only 300 samples are used for calculations.
o Test results with different fuses might be different.
o Short current spikes below ~10A (scintillations) will remain unnoticed.
o Only two points to draw the F(t) line and calculate  and .
 Problems with calculations:

o Early failures (before 15 min) are neglected.
o Calculations do not account for the uncertainty in times to failure.
o Due to insufficient sample size, small changes in the number of failures 

might result in significant variations of FR.
o If no failures observed, wear-out degradation (e.g. due to field-induced 

crystallization or Vo
++ migration) can be missed.

 The most significant errors, up to 3 orders of magnitude, are due to 
incorrect voltage acceleration factors.

 The most significant errors, up to 3 orders of magnitude, are due to 
incorrect voltage acceleration factors.
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Historical Data on Voltage 
Acceleration Factor (AF)

Historical Data on Voltage 
Acceleration Factor (AF)

 Experimental data from Navy Crane report, 1982, for various 
hermetic solid tantalum capacitors and data reported by KEMET in 
1972 and 2006
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The data confirm an 
increase of AF errors with V 
and wide range of variations 
of B, from 8 to 24.4.
Note: Paulsen’s data for chip 
capacitors were recalculated from 
power [AF=(V/VR)n] to exponential 
[AF=exp(Bu) ] dependence on 
voltage.

 The range of B is close to predictions of the TDDB model. The range of B is close to predictions of the TDDB model.
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Manufacturers’ Reliability AFManufacturers’ Reliability AF
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AF calculated at 85 oC using 
vendors’ and MIL-spec data

Manufacturer Ea, eV
AVX 0.63

KEMET 1.17
MIL-PRF-55365 2.1

HITACHI 0.62
NEC/TOKIN 0.66

Vishay*/MIL-HDBK-217F 0.15
Panasonic 0.16

Activation energy, Ea, calculated based 
on vendors’  and MIL-spec data

 Manufacturers’ data on voltage and temperature acceleration 
factors vary substantially.  

 Inconsistency in the data require more analysis.

 Manufacturers’ data on voltage and temperature acceleration 
factors vary substantially.  

 Inconsistency in the data require more analysis.
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Highly Accelerated Life Testing (HALT) 
at Different Test Conditions 

Highly Accelerated Life Testing (HALT) 
at Different Test Conditions 
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4.7uF 50V capacitors at different BI conditions
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Statistical Model of FailuresStatistical Model of Failures
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The characteristic life can be presented as a general log-linear relationship

PART F S  0 1 2 t0, hr H, eV n B_85C

4.7uF 50V 90 117 0.24 -15.06 12761.6 -68.61 2.9E-07 1.1 3.7 9.6

22uF 50V 40 41 0.40 -28.13 21026.1 -124.49 6.1E-13 1.8 3.4 17.4

22uF 63V 59 43 0.24 -28.45 25072.2 -145.03 4.4E-13 2.1 3.5 20.6

Based on TDDB model, the following conversion was used:

 Results for 7 part types showed that the acceleration constant B 
varies from 10 to 20.

 Results for 7 part types showed that the acceleration constant B 
varies from 10 to 20.
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Errors in FR calculations related to the testing conditions sum 
up to an order of magnitude.  

Errors related to incorrect AFs can change FR up to 103 times.
Reliance on MIL-PRF-55365 method for reliability rating might 

be misleading.
TDDB model predicts an exponential dependence of AF on 

voltage with the voltage acceleration constant B depending on 
temperature.  

Temperature dependence of AF can be presented in the 
Arrhenius-like form with Ea varying with voltage.

AF can be obtained using HALT and approximation of test 
results with a general log-linear relationship at two levels of 
stress factors.
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Mechanisms of Surge Current FailuresMechanisms of Surge Current Failures
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 Sustained scintillation breakdown.
If current is not limited, self-healing does not 
have time to develop. 

 Electrical oscillations in circuits with 
high inductance. 

 Local overheating of the cathode. 
 Mechanical damage to tantalum 

pentoxide dielectric caused by the 
impact of MnO2 crystals. 

 Stress-induced-generation of electron 
traps caused by electromagnetic forces 
developed by high currents.

 In all models the rate of voltage increase is critical. In all models the rate of voltage increase is critical.

Ta
MnO2

Ignition due to exothermic reaction in 
tantalum capacitors. Prymak 2006.
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Effect of dV/dt on Breakdown VoltageEffect of dV/dt on Breakdown Voltage

20

 Scintillation breakdown voltage, 
VBRscint (dV/dt ~ 1 to 5 V/sec) is always 
greater than the surge current 
breakdown voltage, VBRsurge
(dV/dt ~ 105 to 106 V/sec) 

 The rate of voltage increase changes
charges and electrical field 
at the interface.

Accumulation of electrons on traps 
at the MnO2-Ta2O5 interface with 
time increases the barrier, the level 
of electron injection, and the 
probability of avalanching.

 The rate of voltage increase is critical for breakdown.
 A resistor in series with a capacitor reduces dV/dt and failures.
 The rate of voltage increase is critical for breakdown.
 A resistor in series with a capacitor reduces dV/dt and failures.

Fast voltage rise            Slow voltage riseFast voltage rise            Slow voltage rise

Ta
MnO2
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 History of requirements for circuit resistance (Rac):
 In the 1960s: 3 Ω per each volt of operating voltage.
 By the 1980s: 1 Ω per each volt.
 From the 1990s: 0.1 Ω per volt or 1 ohm, whichever is greater.
 Manufacturers consider surge current failures as the major 

reason for voltage derating.
 Do we need derating of currents in addition to voltage?
 The limit for acceptable surge currents is set by the SCT 

conditions: the current during applications should not exceed 
the current during testing: Iappl.< Itest

 Improvements in reliability and the need to increase the 
efficiency of power supply systems resulted in reduction of Rac.

 At what conditions we can allow circuit designs without Rac?
 Need a closer look at how the Itest is specified.

 Improvements in reliability and the need to increase the 
efficiency of power supply systems resulted in reduction of Rac.

 At what conditions we can allow circuit designs without Rac?
 Need a closer look at how the Itest is specified.

“use as tested”“use as tested”
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 SCT per MIL-PRF-55365H:
 Number of cycles: Nc = 4 surge cycles.
 Energy storage capacitor: CB = 20×CDUT
 Test voltage: VR
 Charge time, tch, and discharge time, tdisch,  ≥ 1sec. 
 Total DC resistance of the test circuit, Rtc, including the wiring, fixturing, and 

output impedance of the power supply should not exceed 1 Ω.
 Measurements after SCT: DCL, C, DF (still no requirements for ESR)
 The minimum surge peak current shall be: Itest ≥ VR/(Rtc + ESRspec), Rtc = 1 Ω.
 Failure condition: current = 1A after 1ms for C ≤ 330uF; 10ms for C ≤ 3.3mF, 

and 100ms for C > 3.3mF.
 Before 12/1/2012: 
 Nc = 10.
 tdisch = tch = 4 sec.
 Rc ≤ 1.2 Ohms.
 CB ≥ 50 mF.
 No Itest requirements.

New specifications recognize the role of 
ESR as a limiting factor for surge currents. 
However, no specifics for Itest verification.
M55365 does not guarantee reliable 

operation at VR: Vtest = VC_MAX = 0.95×VR, 
=> the need for voltage derating.

New specifications recognize the role of 
ESR as a limiting factor for surge currents. 
However, no specifics for Itest verification.
M55365 does not guarantee reliable 

operation at VR: Vtest = VC_MAX = 0.95×VR, 
=> the need for voltage derating.
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 Typical application conditions:
 No limiting resistors, minimal inductance.
 Minimal contact resistance.

 Resistance of the circuit, Rac, is minimal 
and the current is limited mostly by ESR.

 Surge Current Test conditions:
 Unspecified contact resistance of fixtures.
 Limiting resistor can be up to 1 Ω.
 Relatively long wires and inductance.
 No clear requirements for Itest verification (when, how?).

 Parts with poor contacts in the fixture can pass the testing.

Application conditions might be more severe than test conditions.
There is a need in tightening test requirements.
Application conditions might be more severe than test conditions.
There is a need in tightening test requirements.

Example:
• A 15F 10V CWR06 
capacitor with specified 
ESR=2.5Ω and real ESR = 
0.5Ω is used in a 5V line.
• During application the part 
can experience a spike:

Iappl = 5/0.5 = 10 A.
• During the testing it will be 
verified to the current:

Itest ≥ VR/(Rtc + ESRspec)
Itest =10/(1+2.5) = 2.8 A

Example:
• A 15F 10V CWR06 
capacitor with specified 
ESR=2.5Ω and real ESR = 
0.5Ω is used in a 5V line.
• During application the part 
can experience a spike:

Iappl = 5/0.5 = 10 A.
• During the testing it will be 
verified to the current:

Itest ≥ VR/(Rtc + ESRspec)
Itest =10/(1+2.5) = 2.8 A
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 Theory and experiments show that 
the rate of the voltage increase is 
critical for SCT.

 High current spike is a byproduct of 
the fast voltage rise, rather than 
the major cause of failure.

 Even minor variations (~0.1 Ω) of 
Rc affect results of SCT.

 Measurements of voltage level 
across the capacitor during testing that are used to assure 
that the part passed SCT are not informative without 
indication of timing.

The amplitude of the current spike is the most adequate 
characteristic to verify SCT conditions.
The amplitude of the current spike is the most adequate 

characteristic to verify SCT conditions.
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 Rac includes resistance of wires and 
contacts.

 The length of wires affects inductance.
 Type of switch.
 The rate of voltage increase in 

case of using field effect transistor (FET).

 To simulate worst case conditions Isp should be maximized. To simulate worst case conditions Isp should be maximized.
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 Isp increases linearly with voltage allowing for calculations of 
the effective resistance of the circuit, Reff,.

 Reff corresponds to the impedance of the circuit and includes 
Rac, ESR, resistance of contacts, and circuit inductance, Lc.

 Isp increases linearly with voltage allowing for calculations of 
the effective resistance of the circuit, Reff,.

 Reff corresponds to the impedance of the circuit and includes 
Rac, ESR, resistance of contacts, and circuit inductance, Lc.
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 Different lot date codes of 22 F 35V capacitors.

 Effect of temperature  Parts with larger ESR (Reff) had 
greater VBR.

 Temperature decreases ESR 
resulting in lower VBR.

 An increase in Reff by ~0.1Ω
results in increase of VBR ~10%.

 Parts with larger ESR (Reff) had 
greater VBR.

 Temperature decreases ESR 
resulting in lower VBR.

 An increase in Reff by ~0.1Ω
results in increase of VBR ~10%.
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 In an optimized set-up the difference 
between Reff and ESR is 0.1 - 0.2 Ω.

 In an optimized set-up the difference 
between Reff and ESR is 0.1 - 0.2 Ω.
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 Results of SCT depend on the rate of voltage increase.
 To assure proper SCT conditions, current spike 

amplitudes, Isp, should be measured for each part, and 
conditions  VR/Isp = Reff < 0.5 + ESR should be verified.

 Tantalum capacitors manufactured per M55365 might 
fail at first power turn-on due to non-adequate SCT 
conditions.

 Additional testing and analysis (to compare levels of 
current spikes during testing and application) are 
necessary to use tantalum capacitors without limiting 
resistors. 
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