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 Screening techniques for multilayer
ceramic capacitors (MLCC) with cracks.
 How to select robust parts and prevent cracking?
 How cracking affects reliability and performance? 
 What testing would mitigate the risk of failure?

 Reliability of advanced wet and 
solid tantalum capacitors.
Wet capacitors:
 Effect of reverse bias and requirements for qualification testing.
 Effect of random vibration and requirements for lot acceptance testing.
 Effect of ripple currents and requirements for qualification testing.

Solid capacitors:
 Surge current testing and requirements for surge-limiting resistors.
 Weibull grading test and voltage derating requirements.

0.1uF 50V MLCC failed after 1.5y of the system 
operation and testing (FA by C. Greenwell)
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Dielectric Withstanding Voltage 
(DWV) test requires application of 
2.5 times rated voltage (VR).

Only ~20% of parts with gross 
defects failed the test.

19 out of 30 (63%) lots of parts 
damaged by X-sectioning and 
thermal shock (TS) had the 
probability of DWV test failure <1%.

 Breakdown voltage (VBR) is sensitive to the presence of 
defects and reflects quality of the lot.

 The effectiveness of the existing DWV testing is low.
 Guidelines:                                                      - (5% level)/2

 Breakdown voltage (VBR) is sensitive to the presence of 
defects and reflects quality of the lot.

 The effectiveness of the existing DWV testing is low.
 Guidelines:                                                      - (5% level)/2  25.0 avrcr VBRVBR
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Absorption currents 
prevail at room temp.
 Intrinsic leakage 
currents prevail at 
high temperatures, 
>85 °C.
Standard IR 
measurements fail 
to reveal cracks in 
MLCCs.
Measurements of 
absorption voltages 
can expose the 
difference.

Standard IR 
measurements fail 
to reveal cracks in 
MLCCs.
Measurements of 
absorption voltages 
can expose the 
difference.
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 Pb and Sn dendrites and 
deposits are formed near the 
edge cathode electrodes.

 HSSLV failures: 0/20 base metal 
electrode (BME), MLCCs and 
17/20 precious metal electrode 
(PME), MLCCs.
Ag dendrites grow on PME 

and nickel carbonates on 
BME capacitors. 

HSSLV testing might 
be useful for PME 
capacitors but is 
much less effective 
for BME capacitors.

HSSLV testing might 
be useful for PME 
capacitors but is 
much less effective 
for BME capacitors.
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MLCCs with Cracks

Degradation of Leakage Currents in 
MLCCs with Cracks

7

Monitoring of leakage currents with time at VR to 2×VR during or 
after exposure to humid environments might be a useful 
technique to reveal capacitors with cracks.
The effectiveness of the Resistance to Moisture Absorption Test 

(RMAT) is currently being evaluated. 

Monitoring of leakage currents with time at VR to 2×VR during or 
after exposure to humid environments might be a useful 
technique to reveal capacitors with cracks.
The effectiveness of the Resistance to Moisture Absorption Test 

(RMAT) is currently being evaluated. 
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I. Scope
II. Background
III. Parts selection and construction 

analysis/DPA
IV. Lot acceptance testing
V. Qualification testing
VI. Freshness policy
VII. Derating
VIII. Assembly

 Guidelines, Rev.A, that addresses issues related to both, 
PME and BME capacitors, has been posted at the NEPP 
web site in 2012. 

 Rev.B of the guidelines that addresses cracking-related 
issues in more details will be prepared in 2014.

 Rev.B of the guidelines that addresses cracking-related 
issues in more details will be prepared in 2014.
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 Volumetric efficiency is achieved by 
reducing the thickness of the cathode 
layer, increasing the size of the slug, and 
using high-CV powders.
M39006              DWG93026

 Breakdown margin is similar for both types of capacitors.
 Anodic system remains the same => no effect on life testing.
 Better performance does not come free: effect of design on 

reliability at reverse bias and vibration.

 Breakdown margin is similar for both types of capacitors.
 Anodic system remains the same => no effect on life testing.
 Better performance does not come free: effect of design on 

reliability at reverse bias and vibration.
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The transfer charge to failure is below 
the specified value of 0.05C.

Failures result in increasing leakage 
currents, bulging of the case, electrolyte 
leak, and corrosion.

Failures might occur at RB < 0.5 V.
Some part types can withstand long-

term reverse bias at 1.5V.

The transfer charge to failure is below 
the specified value of 0.05C.

Failures result in increasing leakage 
currents, bulging of the case, electrolyte 
leak, and corrosion.

Failures might occur at RB < 0.5 V.
Some part types can withstand long-

term reverse bias at 1.5V.

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0.001 0.01 0.1 1 10 100

cu
rr

en
t, 

A

time, hr

93026 470uF 50V RBS 0.5V

SN6 8E-3
SN7 1E-2
SN8
SN9 2.1E-2

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0.001 0.01 0.1 1 10 100

cu
rr

en
t, 

A

time, hr

93026 470uF 50V RBS 0.5V

SN6 8E-3
SN7 1E-2
SN8
SN9 2.1E-2

Forward bias: Oxidation      Reverse bias: Electrodeposition of cathode Me 

Pd deposits 
on Ta2O5

Presented by Alexander Teverovsky at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop 
(ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 10-13, 2013 and published on nepp.nasa.gov.



Effect of VibrationEffect of Vibration

12

Capacitors are qualified to 20 g sin high frequency vibration only.

 Different part types have failures 
from 10 grms to > 65 grms.

 Some DWG93026 parts can fail at 
vibration levels that are below the 
mission assurance requirements.

 New design capacitors are qualified 
to random vibration at 20 grms.

 Different part types have failures 
from 10 grms to > 65 grms.

 Some DWG93026 parts can fail at 
vibration levels that are below the 
mission assurance requirements.

 New design capacitors are qualified 
to random vibration at 20 grms.
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Gas pressure can be calculated using Faraday and gas laws.
Strain ~0.07% corresponds to a pressure of dozens of atm.
Gas pressure => H2 embrittlement at cold work areas => fracture.
 Guidelines testing requirements: random vibration at 20 grms, 

and reverse bias at 85C, 1.5V.
 Guidelines testing requirements: random vibration at 20 grms, 

and reverse bias at 85C, 1.5V.

H2 generation at cathode:
2e- + 2H2O(L) => H2(g) + 2OH-(aq)
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Ripple Current Testing and DeratingRipple Current Testing and Derating
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Questions to be addressed:
 How maximum ripple current is 

determined?
 Is life ripple current testing more stressful 

compared to the DC bias only life test? 
 How vacuum affects  temperature rise? 
What ripple currents can be applied at low 

temperatures, frequencies? 
 Do we need to derate ripple currents? 
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Preliminary results:
Derating is necessary.
At  f < 1 kHz thermal run-away is 

possible.
Ripple life testing is less stressful than 

regular life testing at 85°C and VR.

Preliminary results:
Derating is necessary.
At  f < 1 kHz thermal run-away is 

possible.
Ripple life testing is less stressful than 

regular life testing at 85°C and VR.
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I. Scope
II. Background
III. Failure rate
IV. Construction analysis/DPA
V. Lot acceptance testing
VI. Qualification testing
VII. Freshness policy
VIII. Derating

 Guidelines, Rev.A, that addresses reverse bias and 
vibration testing issues has been posted at the NEPP 
web site in 2012.

 Rev.B of the guidelines that includes requirements for 
ripple current testing is currently being developed.

 Rev.B of the guidelines that includes requirements for 
ripple current testing is currently being developed.

Presented by Alexander Teverovsky at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop 
(ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 10-13, 2013 and published on nepp.nasa.gov.



Surge Current Testing (SCT) and 
Derating for Solid Tantalum Capacitors 

Surge Current Testing (SCT) and 
Derating for Solid Tantalum Capacitors 
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Effect of dV/dt on Breakdown VoltageEffect of dV/dt on Breakdown Voltage
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 Scintillation breakdown voltage, 
VBRscint (dV/dt ~ 1 to 5 V/sec) is always 
greater than the surge current 
breakdown voltage, VBRsurge
(dV/dt ~ 105 to 106 V/sec) 

 The rate of voltage increase changes
charges and electrical field 
at the interface.

Accumulation of electrons on traps 
at the MnO2-Ta2O5 interface with 
time increases the barrier, the level 
of electron injection, and the 
probability of avalanching.

 The rate of voltage increase is critical for breakdown.
 A resistor in series with a capacitor reduces dV/dt and failures.
 The rate of voltage increase is critical for breakdown.
 A resistor in series with a capacitor reduces dV/dt and failures.

Fast voltage raise            Slow voltage raiseFast voltage raise            Slow voltage raise

Ta
MnO2

40

60

80

100

120

140

160

40 60 80 100 120 140 160

VB
R

_3
SC

T,
 V

VBR_scint, V

Effect of dV/dt on VBR for 50V capacitors

40

60

80

100

120

140

160

40 60 80 100 120 140 160

VB
R

_3
SC

T,
 V

VBR_scint, V

Effect of dV/dt on VBR for 50V capacitors

Presented by Alexander Teverovsky at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop 
(ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 10-13, 2013 and published on nepp.nasa.gov.



Surge Current Derating RequirementsSurge Current Derating Requirements

18

 History of requirements for circuit resistance (Rac):
 In the 1960s: 3 Ω per each volt of operating voltage.
 By the 1980s: 1 Ω per each volt.
 From the 1990s: 0.1 Ω per volt or 1 ohm, whichever is greater.
 Manufacturers consider surge current failures as the major 

reason for voltage derating.
 Do we need derating of currents in addition to voltage?
 The limit for acceptable surge currents is set by the SCT 

conditions: the current during applications should not exceed 
the current during testing: Iappl.< Itest

 Improvements in reliability and the need to increase the 
efficiency of power supply systems resulted in reduction of Rac.

 At what conditions we can allow circuit designs without Rac?
 Need a closer look at how the Itest is specified.

 Improvements in reliability and the need to increase the 
efficiency of power supply systems resulted in reduction of Rac.

 At what conditions we can allow circuit designs without Rac?
 Need a closer look at how the Itest is specified.

“use as tested”“use as tested”
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 SCT per MIL-PRF-55365H:
 Number of cycles: Nc = 4 surge cycles.
 Energy storage capacitor: CB = 20×CDUT
 Test voltage: VR
 Charge time, tch, and discharge time, tdisch,  ≥ 1sec. 
 Total DC resistance of the test circuit, Rtc, including the wiring, fixturing, and 

output impedance of the power supply should not exceed 1 Ω.
 Measurements after SCT: DCL, C, DF (still no requirements for equivalent 

series resistance (ESR))
 The minimum surge peak current shall be: Itest ≥ VR/(Rtc + ESRspec), Rtc = 1 Ω.
 Failure condition: current = 1A after 1ms for C ≤ 330 F; 10ms for C ≤ 3.3 mF, 

and 100ms for C > 3.3 mF.
 Before 12/1/2012: 
 Nc = 10.
 tdisch = tch = 4 sec.
 Rc ≤ 1.2 Ohms.
 CB ≥ 50 mF.
 No Itest requirements.

New specification recognizes the role of the 
ESR as a limiting factor for surge currents. 
However, no specifics for Itest verification are 
given.

The specification does not guarantee reliable 
operation at VR: Vtest = VC_MAX = 0.95×VR, 
=> the need for voltage derating.

New specification recognizes the role of the 
ESR as a limiting factor for surge currents. 
However, no specifics for Itest verification are 
given.

The specification does not guarantee reliable 
operation at VR: Vtest = VC_MAX = 0.95×VR, 
=> the need for voltage derating.
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 Typical application conditions:
 No limiting resistors, minimal inductance.
 Minimal contact resistance.

 Resistance of the circuit, Rac, is minimal 
and the current is limited mostly by ESR.

 Surge Current Test conditions:
 Unspecified contact resistance of fixtures.
 Limiting resistor can be up to 1 Ω.
 Relatively long wires and inductance.
 No clear requirements for Itest verification (when, how?).

 Parts with poor contacts in the fixture can pass the testing.

Application conditions might be more severe than test conditions.
There is a need in tightening test requirements.
Application conditions might be more severe than test conditions.
There is a need in tightening test requirements.

Example:
• A 15F 10V CWR06 
capacitor with specified 
ESR=2.5Ω and real ESR = 
0.5Ω is used in a 5V line.
• During application the part 
can experience a spike:

Iappl = 5/0.5 = 10 A.
• During the testing it will be 
verified to the current:

Itest =10/(1+2.5) = 2.8 A

Example:
• A 15F 10V CWR06 
capacitor with specified 
ESR=2.5Ω and real ESR = 
0.5Ω is used in a 5V line.
• During application the part 
can experience a spike:

Iappl = 5/0.5 = 10 A.
• During the testing it will be 
verified to the current:

Itest =10/(1+2.5) = 2.8 A
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8/ Suggestions for further actions: 
- get experimental data for ESR,
- calculate actual Rtc = Reff – ESR, 
- SCT at greater voltage levels, …

spectc
test ESRR

VRI


1/ , Rtc = 1 Ω

2/ In case of using power supplies (PS) 
with current compliance, make sure that 
the clamping time  ≤ 10us. IPS = Imax PS.

5/ SCT should be carried out at a min. 
wire length, no limiting resistors, and Isp
should be verified to be greater than 

Isp > VR/(0.5 + ESR)

7/ Actual derating: d = Vapp/VR  

3/ Estimate ESR as ESRspec/N, where
N=7, 3, 2 for CWR06/11/29 respectively.
4/  Reff = VR/Isp, where Isp is the surge 
current spike amplitude.

6/ Standard voltage derating:  = 0.5
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 Testing techniques for ceramic capacitors with cracks:
 The effectiveness of acoustic microscopy, breakdown voltage and insulation 

resistance measurements, and humidity steady-state low voltage testing to 
reveal capacitors with cracks has been evaluated and improvements suggested.
 Mechanisms of degradation of leakage currents in capacitors with cracks are 

being studied and rev.B of the guidelines for selection and testing of commercial 
MLCCs is planned for 2014.

 Reliability of advanced wet and solid tantalum capacitors.
Wet capacitors:

 Mechanisms of failures under reverse bias conditions and vibration have been 
studied and the relevant qualification and lot acceptance tests are suggested.
 There is a need for ripple current testing and derating. A new version of the 

guidelines will be developed in 2013.
Solid capacitors:

 Tantalum capacitors manufactured per M55365 might fail in applications due to 
non-adequate surge current test requirements.
 An algorithm for additional testing that are necessary to assure reliable operation 

of capacitors without limiting resistors is suggested. 
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