

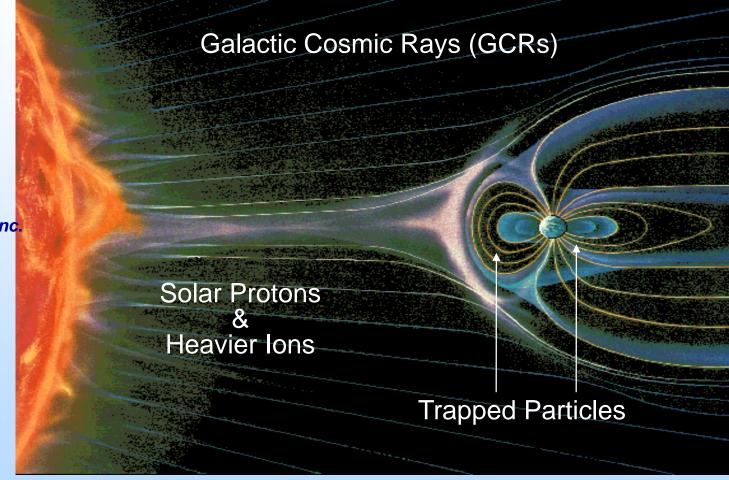
A NASA Perspective on Validation and Testing of Design Hardening for the Natural Space Radiation Environment

Hubble Space Telescope has utilized a robust system design to conquer radiation challenges

Kenneth A. LaBel, NASA/GSFC

kenneth.a.label@nasa.gov

James W. Howard, Jackson and Tull Chartered Engineers, Martin A. Carts, Raytheon, Christina Seidleck, Raytheon

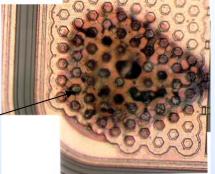


Outline

- NASA Requirements for Radiation Hardness
 - What NASA needs and what environment/effects we care about
- Testing HBD devices: Test Considerations
- NASA Evaluation Task: Using a Microcontroller as a Test Vehicle
- Final Considerations

Space Radiation Environment: The Hazard for NASA

Deep-space missions may also see: neutrons from background or radioisotope thermal generators (RTGs); Avionics may observe GCRs/neutrons at altitude


Presentation at GOMAC 2003 - Tampa, FI - Kenneth A. LaBel - Apr 2, 2003

Nikkei Science, Inc. of Japan, by K. Endo

Space Radiation Effects

- Critical areas for design in the natural space radiation environment
 - Long-term effects
 - Total ionizing dose (TID)
 - Displacement damage (DD) in a COTS 120V DC-DC Converter

Transient or single particle effects (Single event effects or SEE)

Destructive SEE

- Soft or hard errors
- Mission requirements and philosophies vary to ensure mission performance
 - What works for a shuttle mission may not apply to a deep-space mission

Radiation Device Regimes for the Natural Space Environment

- High
 - > 100 krads
 (Si)
 - May have
 - long mission duration
 - intense single event environment
 - intense displacement damage environment

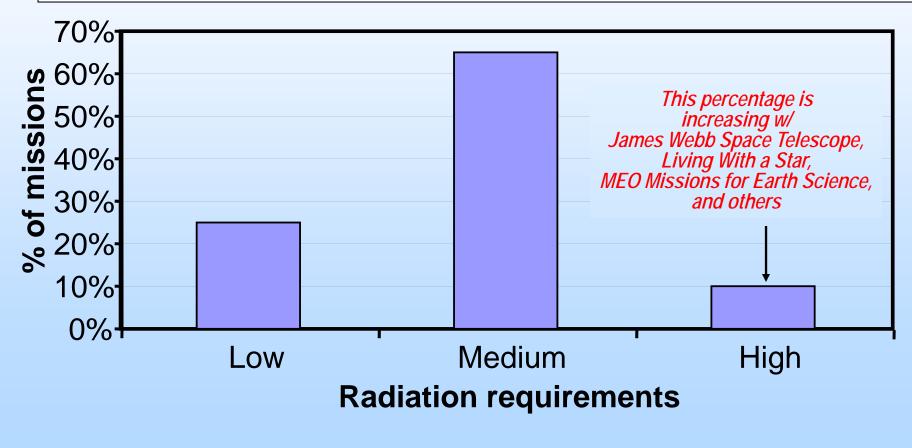
- Moderate
 - 10-100 krads
 (Si)
 - May have
 - medium mission duration
 - intense single event environment
 - moderate displacement damage environment

- **Low**
 - < 10 krads (Si)</p>
 - May have
 - short mission duration
 - moderate single event environment
 - low displacement damage environment

Examples: Europa, GTO, MEO Type of device: Rad hard (RH)

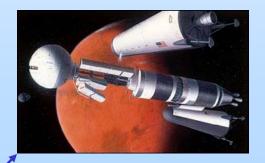
Examples: Polar, highLEO, L1, L2, ISSA Type of device needed: Rad tolerant (RT) Examples: Hubble Space Telescope, Shuttle, LEO (low-inclination) Type of device needed: Commercial with SEE mitigation

Aeronautics must deal with neutron SEE environment


Presentation at GOMAC 2003 - Tampa, FI - Kenneth A. LaBel - Apr 2, 2003

Mix of NASA Missions and Radiation Requirements

>200 missions are currently in some stage of development



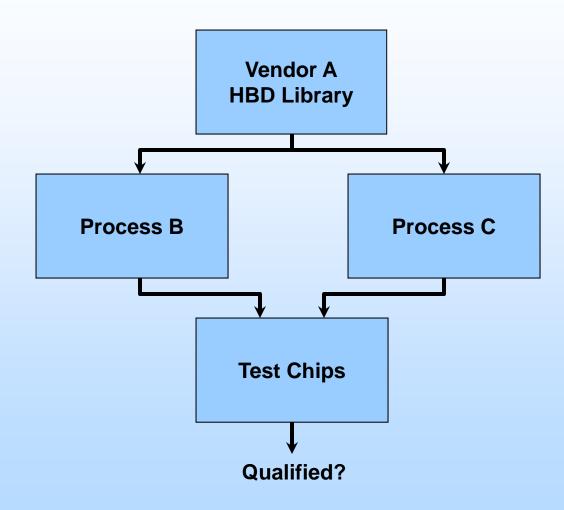
Presentation at GOMAC 2003 – Tampa, FI – Kenneth A. LaBel – Apr 2, 2003

Implications of Radiation Needs for Hardening

- NASA philosophy has always been performance-driven
 - Increased capability within reduced spacecraft volume/weight/power COTS?
 - Radiation has usually been a secondary consideration
- NASA Radiation Hardness Needs
 - SEE: hard to destructive issues, tolerant (or manageable) to non-destructive
 - TID/DD: 100 krad(Si) covers lots of ground for NASA
 - Few missions require above this level (even with design margin)
 - Europa being an obvious exception
 - DD becomes a larger issue for new nuclear propulsion missions
 - Added neutrons to the environment exposure

Artist's conception of a nuclear-powered MARS mission

Presentation at GOMAC 2003 - Tampa, FI - Kenneth A. LaBel - Apr 2, 2003


Radiation Test Considerations

- Standard items
 - Existing microelectronics test standards and guidelines for devices
 - ASTM, MIL-STD, JEDEC
 - Flux, fluence, rates, particle, etc...
 - Radiation test structures
 - Qualify a process
 - ASIC test methods
 - Qualifying a single design/chip

- Unique aspects of HBD
 - HBD can be a mix of minimally-invasive process tweaks and/or design methods (re: circuits like the Mission Research Corp.'s temporal latch)
 - Some are "processindependent"
 - The question becomes
 - How do you qualify a HBD library that's portable?

Sample HBD Test Consideration Scenario – Initial Flow

Presentation at GOMAC 2003 – Tampa, FI – Kenneth A. LaBel – Apr 2, 2003

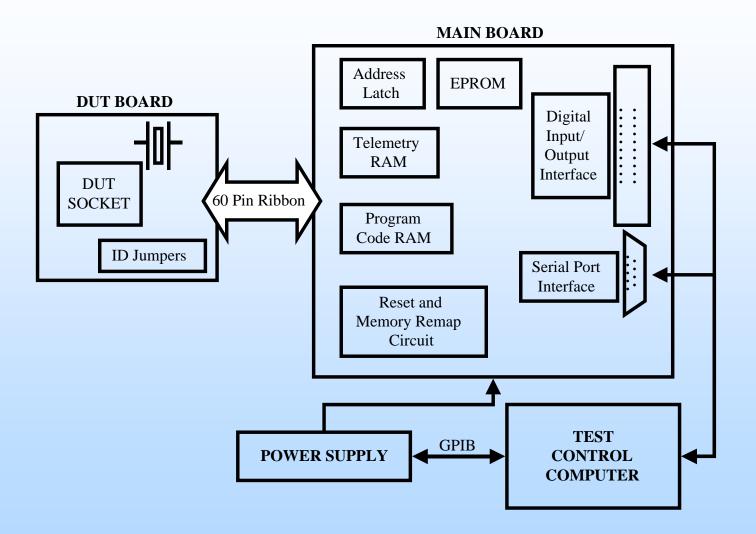
NASA Project	Does HBD cover relevant effects?	Any process changes?	Test chip coverage?	Chip operation?
New chip design using HBD library; 9 months after test chip is qualified	Was library designed for hardness to all relevant environments? Nuclear dose rate hardness does not imply SEE hardness	Was any hardness characteristic a function of the process? Might drive process selection (B versus C)	Did the test chip cover all the library cells? Statistically? If new test, some portion may be waived based on inherent hardness	Were speed, operating voltages, etc. of the test adequate for the new chip? Items like single event transients can be missed

Summary of HBD-specific Test Considerations

- These recommendations are mostly common sense
 - Know the design library
 - Know the library coverage during "qualification"
 - Know how it was tested (versus your application)
 - Know the foundry/process
- If all these items are known and applicable to the new chip design, then no new radiation testing may be required

- In FY03, we have begun the process of evaluating different HBD techniques for NASA usage
 - Some have previous evaluation, while some are in development
- We have chosen the 8051 microcontroller as the test article
 - Industry standard device with COTS and HBD options available
 - Inexpensive test set development versus other complex devices
 - Mix of logic types: memory and combinatorial
 - Capable of operating at different clock speeds
 - Different power supply versions available
 - Moderately complex (realistic)
- Plan is to use the same test setup to evaluate SEE performance on both COTS and HBD devices in FY03
 - Example vendors include
 - Intel, Aeroflex-UTMC and University of Idaho's CMOS Ultra-Low Power Radiation Tolerant (CULPRiT)

8051 Device Examples


CULPRIT

- ~0.5V Vdd device
- Relies on inherent process TID hardness (AMI), but can tweak to gain additional hardness by use of backbiasing
- SEL hardness by process
- SEU hardness uses technique developed by Whitaker, Maki, et al for tolerant cell design

- Mission Research Corp
 - DoD technology development
 - Uses temporal latch designs
 - Foundry independent
- Intel
 - Strictly commercial
 - Used as a baseline for development and benchmarking

8051 Test Setup

Presentation at GOMAC 2003 – Tampa, FI – Kenneth A. LaBel – Apr 2, 2003

8051 Software Testing

PC Controller 8051 Board **RS 232 Communications Boot Code Monitor** - Test Code Loader **EEPROM** - Test Monitor Serial Code Loader **Register Test Memory Test** Dynamically Loaded Interrupt Test Executable **Test Code** Stack Test Space **Serial Port Test Future Tests**

Summary and Comments

- HBD is very applicable to many NASA missions
 - Not all missions have time to develop and qualify custom designs
 - If "pre-qualified", problem is reduced
 - Performance parameters required using COTS
 - We did not discuss the impact of HBD on electrical (re: speed/power/size) performance
- Know what your testing and what has been tested and applicability