Low-Energy Proton Test Method Development

Jonathan A. Pellish
NASA/GSFC Code 561
Radiation Effects & Analysis Group
Greenbelt, MD

Paul W. Marshall
NASA Consultant
Brookneal, VA

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

www.nasa.gov

Presented by J. A. Pellish at the JEDEC JC-13 Meeting on 25 May 2011 in Baltimore, MD USA
Acknowledgements

• NASA Electronic Parts and Packaging program
• Defense Threat Reduction Agency
• Carlos Castaneda
 – UC Davis/Crocker Nuclear Lab
• Paul Dodd, Marty Shaneyfelt, and Jim Schwank
 – Sandia National Labs
• Dave Heidel and Ken Rodbell
 – IBM T.J. Watson Research Center
• Ken LaBel
 – NASA/GSFC
• Marcus Mendenhall, Robert Reed, and Robert Weller
 – Vanderbilt University
Outline

• Why do/should we care?
• Proton facility and data collection
 – Low-energy proton test results
 – Experimental setups
 – Beam line monitoring
 – Systematic considerations
• Analysis
 – Proton transport simulations
 – Error rate calculations
• Current recommendations
• Future work
There are lots of protons in space and you cannot shield them.

- Shielding hardens spectrum
- Low-energy protons don’t go away

Differential Proton Spectrum for the near-Earth Interplanetary Environment

Low-Earth, highly-elliptical, and geostationary/interplanetary orbits can all have substantial proton environments with which to contend.
How do you know if low-energy protons are a soft error issue for your technology?

Texas Instruments 65 nm bulk CMOS SRAM

IBM 45 nm SOI CMOS SRAM

Helium, nitrogen, LET, CMOS and SOI...

Are low-LET heavy ions equivalent to low-energy protons?
Texas Instruments and IBM Low-Energy Proton Results

Texas Instruments 65 nm bulk CMOS SRAM

IBM 45 nm SOI CMOS SRAM

Top-side versus flip-chip irradiation
Starting energy of the proton beam affects peak width
Typical UC Davis Experimental Setup

Assuming Setup In-Air (can do vacuum)

- Beam diameter on 0.25 mil Ta foil is 0.79 cm (Quadrupole focused)
 - Some questions about angular dispersion
- Defining collimator diameter is 5.97 cm
- Secondary electron emission monitor (SEEM) uses three 0.25 mil Al foils
- User-selected degraders are inserted here (Al or Mylar)
- Kapton exit window
- Air gap is user-selected within experimental parameters
 - Could eliminate w/ vacuum chamber

Courtesy of T. Essert and M. Van de Water (UCD/CNL)

Presented by J. A. Pellish at the JEDEC JC-13 Meeting on 25 May 2011 in Baltimore, MD USA
Typical UC Davis Experimental Setup

- Try to keep air gap as small as possible or work in vacuum
- Most irradiations to-date have been at normal incidence, though angles do produce interesting results
Typical UC Davis Experimental Setup

- Old degraders were foils taped to the front of the external collimator
- New degraders are user-controlled from the South Cave
Beam Line Monitoring

- Use Ortec fully-depleted silicon surface barrier detectors
 - Calibrated with 241Am source
 - Degraded to different energies for multiple cal points
- Provides in-situ information regarding mean and distribution
 - Not a particle counter

Example SSBD Proton Energy Spectrum

Periodic energy profile monitoring has become essential
Repeatable single-turn beam extraction not always possible
Proton dE/dx and Range—Systematics

Greatest effect in the shortest distance
Uncertainty in experimental data at low energy

H. Paul data located at:
http://www.exphys.jku.at/stopping/

Presented by J. A. Pellish at the JEDEC JC-13 Meeting on 25 May 2011 in Baltimore, MD USA
Tuned beam energy should be low—keep degraders to a minimum
Short range at stopping implies beam loss in addition to straggling
Sample Preparation—Systematics

- Flip-chip (C4) assembly thinned to ~100 μm and irradiated in-air using 6.5 MeV H⁺
- Thickness difference of < 15 μm from one side of die to other
 - Same scenario possible for thick back end of line
 - X-ray not accurate enough

Sample preparation can distort device cross section

36 Mbit, 45 nm SOI SRAM
Irradiated with 6.5 MeV protons at UC Davis/CNL
Proton Transport Simulations

Degraders
2 mil aluminum & 0.125 mil Mylar

Current simulations capture energy distribution, but not the spatial distribution
Error Rate Calculation Methods

\[\text{SEU rate} = \sigma_{\text{peak}} \cdot \frac{d\phi}{dE} \cdot \Delta E \cdot 4\pi \]

Current models cover both analytic and Monte Carlo methods
Both approaches suffer different weaknesses
Can be traced back to source data set or physical basis
Current Recommendations
Assuming Risk is Established

• Tune beam energy as low as reasonably achievable (cyclotron/Van de Graaff ALARA)
• Measure beam energy profile at the DUT position (measure as we test)
 – Account for beam emittance if possible
• Record all materials in the beam line from the source to the DUT
 – Degrader material (if cyclotron) should be of high quality and the beam should be degraded in vacuum
• Employ physical analysis to reduce sample preparation uncertainties
• Reproduce cross section results to check for consistency
• Calculate soft error rates using as much physical reality as possible
Future Work

- Measure/calculate angular dispersion of UC Davis beam on tantalum foil
 - Confirm Monte Carlo simulations can reproduce
- Develop position on angular irradiations
 - Like heavy ions, protons can be more “effective” at larger incident angles
- Flesh out standard procedures/options for aforementioned recommendations
 - Beam energy measurements
 - Material properties/dimensions recording keeping
 - Physical analysis procedures
 - Error rate calculation levels of rigor
- Complete first version of low-energy proton test method by end of current fiscal year