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Acronym Table
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Acronym Definition Acronym Definition
AND And logic gate CL Combinatorial Logic
FPGA Field Programmable 

Gate Array
fs Operational frequency 

(equal to the inverse of 
clock period)

DFF Flip-flop EndPoint Ending flip-flop for a data 
path

INV Inverter logic gate LET Linear Energy Transfer
Plogic Logic masking 

Probability
SET Single Event Transient

SEU Single Event Upset StartPoint Starting flip-flop for a data 
path

σSEU Single Event Upset 
Cross Section

τclk operational clock period 
(equal to the inverse of 
frequency)

τdly time delay from Start 
Point flip-flop to End 
Point flip-flop

XOR exclusive-or logic gate
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Abstract
• We investigate how an SEU (occurring mid-clock-cycle) 

can induce multiple bit errors in the next clock-cycle
– We refer to this as a domino-effect
– We leverage our investigation from the NASA 

Goddard REAG FPGA SEU model 
– We investigate how logic masking (Plogic) can reduce 

the domino-effect
• Proposed Process:

– Establish data-paths (StartPointCLEndPoint) that 
feed into each EndPoint (cone-of-logic)

– Calculate the probability of reaching erroneous 
states using the model and  σSEU information
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We want to extrapolate σSEU data to complex designs so 
we can predict next state behavior under SEU conditions
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Background (1) : Data-
Paths…StartPointsCLEndPoints

• Based off of defining data-paths as cones of logic, all 
DFFs are analyzed as both StartPoints and EndPoints

• DFF is only analyzed as an EndPoint at the instance 
of a clock edge – i.e.; during capture

• DFF is analyzed as a StartPoint at all other moments; 
i.e., in between clock edges

5

EndPoint = b0 
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• For designs with non-mitigated DFFs the dominant
upsets are StartPoints (i.e., SETs and EndPoint upsets 
are insignificant) 

Background(2)  : The NASA REAG SEU 
FPGA Model; The Probability an EndPoint 

will have an Erroneous Next State
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EndPoint

StartPoints

Combinatorial Logic

Probabilities:
Plogic(k)EndPoint Logic Masking
Plogic(j)StartPoint Logic Masking
Plogic(i)Combinatorial Logic Masking

P(fs)DFFSEUDFF Upset
Pprop(i)Electrical Masking
Pgen(i)SET generation

τwidth= average width of SET

One sum-term 
per next state of 
one EndPoint
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Counter Current State and Expected Next 
State : Single bit SEU Occurring between 
Clock Edges– Single bit SEU in Next State

• An SEU that occurs between clock edges in b2 causes 
b2 to be incorrect in the next clock cycle
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“1010” = 10d

StartPoint
Current 
State

“1011” = 11d

“1110” = 14d

“1111” = 15d

Next State; i.e.,
Expected value at 
next clock edge

SEU in b2

CL CL
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Counter Current State and Expected 
Next State: The Domino Effect

• An SEU in b2 causes b2 and b3 to be erroneous in the 
next clock cycle.

• The number of EndPoints that will be incorrect will 
depend on the current state, CL, dly, and Plogic.
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“0111” = 7d

Current State

“1000” = 8d

Next State
Expected value at 
next clock edge

“0011” = 3d

“0100” = 4d

SEU in b2
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CL between StartPoints and Endoint
Define Logic Masking (Plogic)

• Plogic =1 : 
– No logic masking
– Inverter, buffer, XOR

• 0<Plogic <1
– Variable logic masking
– AND, OR, MUX

• Plogic =0: full logic masking
– Complete logic masking 100% of the time
– Global Triple Modular Redundancy (GTMR) with voter
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Once we figure out the equation for each EndPoint, we can 
determine the impact of Plogic  and potential Domino-Effects

∑βP(fs)DFFSEU(j)(1-τdlyfs)*Plogic(j) 

τdly<<τclk

EndPo int DFF(T )  f (StartPo int DFFs(T 1),CL)
Next state for EndPoint at clock cycle (T):

Probability that an EndPoint will 
have an erroneous next state:

i=1

#StartPoints
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• b0: next state = inverse of 
current state

• Only one data path: 
b0INVb0
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EndPoint = b0 

Counter: EndPoint b0 Data-Paths
function b0= INV b0

Plogic = 1

EndPo int DFF(T )  f (StartPo int DFFs(T 1),CL)

EndPoint=b0
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• b1: next state = XOR of current 
state for b0 and b1

• Two variables= two data paths: 
b0XORb1 and b1XORb1
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EndPoint = b1 

Counter: EndPoint b1 Data-Paths: 
function: b1= b1 XOR b0

Plogic = 1

EndPoint=b1
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Counter: EndPoints bk Data-Paths

• bk next state = inverse of 
current state if all lower bits 
are equal to a logic ‘1’
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EndPoint(=(b2( EndPoint(=(bN‐1(EndPoint = b2 EndPoint = bN-1
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• bkXORbk feedback data: 1 path
• bjANDXORbk k paths: 0≤j≤(k-1)
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EndPoint(=(b2( EndPoint(=(bN‐1(

AND Paths: 
Plogic = 2-k

Feedback Path: 
Plogic = 1

Domino-Effect Occurs through And-Path 
yet Plogic Reduces its Significance

EndPoint = b2 EndPoint = bN-1
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ProASIC3 FPGA σSEUs for StartPoint 
DFFs obtained at Texas A&M Cyclotron 

Facility
• Data does not 

represent Next State 
domino effects

• …they represent 
StartPoint DFFs 
βP(fs)DFFSEU(j)

• Each DFF bit has 
statistically equivalent 
σSEUs
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Bit SEU Cross Sections (P(fs)DFFSEU) at 
10MHz 2.8 MeVcm2/mg

3.9 MeVcm2/mg
8.6 MeVcm2/mg
12.1 MeVcm2/mg

How can we apply this data to predict next state 
response?
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Extrapolation of SEU Data…Finding the 
Probability the Next State of b2 will not 

Match its Expected Value

βP(fs)DFFSEU(b2)+0.25βP(fs)DFFSEU(b1)+0.25βP(fs)DFFSEU(b0)

Each EndPoint DFF (b0 to bn) undergoes same analysis
15

βP(fs)DFFSEU(b2)≈ βP(fs)DFFSEU(b1)≈ βP(fs)DFFSEU(b0)≈ 4.0 x10-7bit/cm2
From the σSEU graph at LET = 12 MeV-cm2/mg 

σSEU for the next state of b2 not equal to its 
expected value: ≈6.0x10-7bit/cm2

Feedback: 
Plogic = 1

And-Path: 
Plogic = 2-2=0.25

And-Path: 
Plogic = 2-2=0.25
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Conclusion(1)
• We use a counter as the design under analysis to 

illustrate the domino-effect – the potential for an SEU to 
induce multiple bit errors.

• The following are real design examples of domino-
effect circuit responses and considerations:
– Do not assume that an SEU will only perturb one bit within one 

clock cycle; e.g.:
Will the SEU response of a state machine cause the next state to 
be uncontrollable because the “safe” state implemention cannot 

protect against this situation?
– Proliferation of control logic to various portions of a circuit 

must be taken into account; e.g.:
Will one SEU fan-out to all reachable paths or just some?  Can the 

error correction or protection handle this event?
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Conclusion(2)
• The domino effect can be reduced by several factors, 

however we focus on the effects of logic masking 
(Plogic)

• This study is part of a process under development 
targeted to extrapolate σSEU data for complex designs

• We show how we can use the NASA Goddard REAG 
FPGA SEU Model combined with SEU data to predict 
a design’s next state under SEU conditions.

• Future work will incorporate τdly and illustrate how 
this process can be implemented as an automated 
tool for complex circuit application 
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Raw bit σSEUs may not be good enough for error rate 
prediction.  Design topology must be taken into 

consideration


