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Background: Single Event Effects 
(SEEs) and Common Terminology

• Single Event Latch Up (SEL): Device latches in high 
current state

Single Event Burnout (SEB): Device draws high• Single Event Burnout (SEB): Device draws high 
current and burns out

• Single Event Gate Rupture: (SEGR): Gate destroyed 
typically in power MOSFETs

• Single Event Transient (SET): current spike due to 
ionization.  Dissipates through bulk
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• Single Event Upset (SEU): transient is caught by a 
memory element. Causes an incorrect state.  SETs are 
categorized under SEUs

• Single Event Functional Interrupt (SEFI) - upset 
disrupts function
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Background: SEUs and Field 
Programmable Gate Arrays (FPGAs)

• Ionizing particles cause upsets (SEUs) in FPGAs

• Each FPGA type has different SEU error signatures:
– Temporary glitch (transient)

– Change of state (in correct state machine transitions)

– Global upsets: Loss of clock or unexpected reset

– Configuration corruption (not all FPGAs)

• When creating a design targeted for a specific FPGA it is 
important to take into account:
– Soft Error Rates (SERs)
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– Types of upsets (error signatures)

• Based on SEU characterization, the designers will decide:
– What type of mitigation is necessary (or none at all)

– Can the FPGA and its intended design implementation meet 
project requirements
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Overview:

• This presentation focuses on how to characterize 
SEU responses of FPGA designs using accelerated 
test an analysisy

• The FPGA is the device under test (DUT)

• Topics covered:
– What to look for regarding the basic elements of an FPGA 

prior to testing

– FPGA configuration test and analysis

– Considerations regarding design test structure selection
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SEU testing of FPGA designs 
requires comprehending the basicrequires comprehending the basic 
elements within FPGA devices and 
the basic building blocks of digital 

designs
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Configuration

Functional Digital Logic

Global Routes

Hidden (specialized) device circuitry
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Field Programmable Gate Array (FPGA)     
FABRIC – System On A Chip (SOC)

LOGIC LOGIC

LOGIC LOGIC

Dedicated Serial 
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GHz I/O

User creates a design by configuring pre-existing 
logic blocks and routes.
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A Closer Look at an FPGA Logic Cell: 
Microsemi ProASIC3

LOGIC LOGIC
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LOGIC LOGIC
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ProASIC3 Library 
Component Cell… 
design building block
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FPGA Building Blocks: How Gates and 
Routes Are Utilized in FPGA Fabrics

Hardware design language (HDL)

Combinatorial

FPGA
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FPGA 

Block

DFF 

FPGA 

Block

Evaluate the DUT-FPGA Fabric Prior to 
Testing:

• This evaluation involves understanding the FPGA’s 
elements and how designs are mapped into its elements.  

• From this information, specific radiation tests and test 
structures can be developed to target the DUT’s variousstructures can be developed to target the DUT s various 
components.

• Data sheet information:
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The Categorization of FPGA Fabric 
Structures and Their Potential SEUs as 

defined by NASA Goddard REAG:

Cross section: SEU = #upsets/(#particles /cm2)

P fs error
PConfiguration P( fs) functionalLogic PSEFI

Design SEU Configuration SEU Functional logic 

SEU

SEFI SEU

S ti l d

SEU p ( p )
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SEU Testing is required in order to characterize the 
SEU for each of FPGA categories
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Sequential and 
Combinatorial 
logic (CL) in 
data path

Global Routes 
and Hidden 
Logic

FPGA Configuration

FPGA MAPPING

Configuration Defines:Configuration Defines:
Arrangement of pre-existing 
logic via programmable 
switches

Functionality (logic cluster)

Connectivity (routes)

Programming Switch 
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g g
Types:

Antifuse: One time 
Programmable (OTP)

SRAM: Reprogrammable (RP)

Flash: Reprogrammable (RP)
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SEU Configuration Testing

• Configuration is a static element

• Once the design is completed, the configuration does 
not change.

• Antifuse testing:
– Based on error signatures.  Is there a permanent fault?

• Flash Testing
– Configure the device, irradiate, then read-back configuration.  

– Unfortunately, current flash devices will not allow a full read-
back but supply configuration validation software.  Pass-fail.
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• SRAM testing:
– Configure the device, irradiate, then read-back configuration. 

– User has full visibility of configuration after read-back 
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Configuration SEU Test Results and 
the REAG FPGA SEU Model

Configuration REAG Model

  SEFILogicfunctionalionConfiguraterror PfsPPfsP  )(
g

Antifuse

SRAM (non-
mitigated)

  SEFILogicfunctionalerror PfsPfsP  )(

  ionConfiguraterror PfsP 
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Flash

Hardened SRAM

  SEFILogicfunctionalerror PfsPfsP  )(

  SEFILogicfunctionalionConfiguraterror PfsPPfsP  )(
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Evaluating Functional Logic Data Path 
Soft Error Rates

• The goal is to approximate the SER of a design

• Unfortunately, the goal does not make much sense 
regarding a complex systemregarding a complex system.
– Some portions of a system are significantly more susceptible 

than others.  SER will depend on what portion of the system is 
operating and what the environment is when it is operating.

– Example: Due to data flow and speed of operation, an RS232 
interface will have a different susceptibility than an Arithmetic 
Logic Unit (ALU)
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– Accelerated testing can disguise the differences

• It’s best to partition the system and determine 
susceptibility per partition.
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Test Structures that allow for Error 
Differentiation and Visibility

• Visibility: Which component caused the system error?

• Component error differentiation is essential:
All f d t di h t ti f th t d– Allows for understanding what portions of the system are under-
mitigated

– Assists in determining rates for various portions of the system 
using accelerated test data

• As test structure complexity grows upset signatures 
become convoluted
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What Design is Best for Single Event 
Testing? 

Simple 

Architecture

Actual flight 

Architecture

Complex 

ArchitectureNo/minimal 
functional Masking

Easy to base-line 
across FPGAs

increases state space

Usually not available at 
test time

Can be very expensive 
to test

Will not cover a 
significant amount of

Functional Masking

Reduction in state 
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increases state space 
coverage

Data may not map 
into real design

Differentiation of 
errors in simpler

significant amount of 
state space while testing

SEFIs will usually 
require a system reset 
for each error event 

Rate calculations are 
misleading

space coverage

Data may be a better 
fit for real designs

Error differentiation 
becomes more 
complex

Caution When Selecting FPGA Test 
Structure Designs for Accelerated 

Testing
• An element’s error response can be different when the 

element is isolated versus when the element is 
connected in a system 

• If not taken into account, this can lead to inaccurate 
design level SEU susceptibility characterization

• Example:
– Studying the response of a combinatorial logic gate may not 

reflect the susceptibility of the gate when placed with other 
i i i d i

Presented by Melanie D. Berg at the Microelectronics Reliability and Qualification Workshop (MRQW), December 11-13, 2012, Los Angeles, CA and 
published on nepp.nasa.gov.

circuits in a design

– System topology will most likely reduce the error cross section

• Capacitive loading

• SET propagation
– Routing

– Logic masking
18
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Implementing Traditional Test Structures In 
FPGA Devices.  Long Inverter Chains Are Not 

Recommended

• Goal is to calculate susceptibility of combinatorial logic 
gates.  Issues:
– Assumes cascaded combinatorial logic has linear SEU effects –

However this is not true (capacitive effects such as attenuation)
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– Does not take into account inverters are not inverters in FPGA 
devices.  The formation of an inverter requires additional circuitry

– Does not take into account complex routing due to the length of the 
chain

– Inverter chains in FPGA devices have a significant amount of noise.  
Most FPGAs are made to implement synchronous designs
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Most Designs Follow Synchronous Design 
Methodology... So Should Test structures

• Designs are comprised of:
• Combinatorial Logic (CL)

• Edge Triggered Flip-Flops (DFFs)
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• Combinatorial Logic: Compute between clock edges

• DFFs: Hold (or sample) at the rising edge of a clock

g gg p p ( )

• Clocks and resets

• All DFFs are connected to a clock

• Clock period: clk; Clock frequency: fs
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Synchronous System Data Paths: 
StartPoint DFFs → EndPoint DFFs  

TT 1 T+1

dly
clk

)),1(()( CLTStartDFFsfTEndDFF 
TT-1 T+1
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“Cone of Logic” 

Combinatorial logic create delay 

(dly ) from StartPoints to EndPoints

Endpoints capture only at clock 
edge 
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Every DFF has a cone of logic

Implementing Traditional Test Structures In 
FPGA Devices.  Shift Register Chains

• Goal is to calculate susceptibility of DFFs and CL gates.  

• Benefits

– Simple test structure that has no logic masking

– Use of combinatorial logic and DFFs helps to study trends.  What 
happens as the amount of combinatorial logic is increased?  Does 
frequency matter?
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– Can easily traverse the entire state space several times over during 
accelerated testing

• Disadvantages - Does not represent a complex design well:

– No logic masking

– Linear path of combinatorial logic

– Capacitive loading is minimized
22
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Increasing Test Structure Complexity: 
Shift Registers versus ?

• There are benefits to increasing design complexity.  
However, limitations must be taken into account:
– State space traversal during testing

– Amount of logic masking

– Visibility of upsets

• NASA REAG uses counters and digital signal 
processing units (e.g. multipliers and accumulators) 
as test structures

• Interface (I/O) management can be difficult for high-
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speed circuits or designs with a large number of I/O.  
– Built-in-Self-Test (BIST) can be a solution

– Caution: BIST circuits have limited visibility –
• Error differentiation can become extremely difficult 

• Determining if the test is operating correctly can become 
difficult

23

Conclusion

• This presentation covered a small portion of SEU 
characterization for FPGA designs:
– Configuration testing and 

t t t t l ti– test structure selection

• Appropriate test structure selection is key to accurate 
SEU characterization
– Simple test structure error responses may not represent 

complex designs.  Hence mapping of radiation data may not be 
accurate

– Complex test structures will limit visibility of errors and state
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Complex test structures will limit visibility of errors and state 
space traversal

– It is best to study a variety of test structures and analyze 
radiation data trends:

– Amount of combinatorial logic

– Frequency 

– Input data pattern
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