Characterizing Data Path Single
Event Upsets in a Synchronous
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Background: Synchronous Design

Data Path | °
* Designs are comprised of: —
 Combinatorial Logic (CL) >maL
« Edge Triggered Flip-Flops (DFFs) }

- —re
> Ny
 Clocks and resets 35 %D‘:

- All DFFs are connected to a clock ; J
* Clock period: 7,,; Clock frequency: f; 3 ;
« Combinatorial Logic: Compute between clock edges
 DFFs: Hold (or sample) at the rising edge of a clock

Between 1
Clock edgesx Teik :f_
clk ~ D S

Rising edge
[_‘ l [_‘ [_\ of clock
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Background: Synchronous System Data it

Paths:
StartPoint DFFs — EndPoint DFFs
Tily1 | Telk =
. > ‘ L
Start Point T-1 , T T+1

DFFs

o Q

~ EndDFF (T) = f (StartDFFs (T —1))

2ns " End Point
' DFF
= (AXOR B ) AND (C XOR D)

CL create delay (7, ) from
StartPoints to EndPoints

Endpoints capture data

. = input only at clock edge

Every DFF has a cone of logic




Background: NASA REAG’s Approach to &)

Error Rate Prediction in a Synchronous
Data Path

* A goal of FPGA Single Event Upset (SEU) testing is to

provide error rate (dE(fs)/dt) predictions to critical
missions

 Depending on the FPGA type, calculations are performed
with respect DFFs or configuration memory bits

* dE(fs)/dt for FPGA devices are calculated using :

System SEU bit Number of used
upset rate upset rate Bits in the design

dE(fs) _ dEy: (fS) * (#UsedBits)
dt dt

This presentation focuses on data path dE, (fs)/dt ( for DFFSs)
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How can a DFF Contain an Incorrect State?
...or What Comprises dE,.(fs)/dt?

Start Point
DFFs
- " End Point
B ?’ e DFF
Evaluate Each &g Lins /3: IR
DFF as an
EndPDlnt = 4ns Tdly = 9.5ns
T /
¢ DFF, Cone of Logic
= éndPoint DFF SEUs + StartPoint DFF SEUs + CL SETs
DFF '
aP(fS) prrsev PP(fS) prrseu (?_Irn ?]I ei eEr:/tesnt
DFF upsets that occur  pFF ypsets that occur ' 20> )
at the clock edge between clock edges
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Overview

SET: \/ SEU
Single Sided

Double sided current spike

EndPoint
/ aP(fS)DFFSEU(k) t
#StartPoint DFFs StartPOintS
#EndPoint DFFs
z ( BPDFFSEU(])(]' - ley(j)fs)) * Plagic(j)) t
Progico * j=1 . . .
k=1 #CL Combinatorial Logic
\ Z(Rgen(i) * Pprop(i) * Plogic(i) * Twidth(i)fs) /
i=1
Probabilities:
P,y PENdPoiNt Logic Masking PprrspyPDFF Upset
P,y PStartPoint Logic Masking P,y PElectrical Masking
Py,.icp PCombinatorial Logic Masking P, @SET generation

= average width of SET
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SEUs Generated Internally to DFFs
(P(fS) prrsev)

 We categorize upsets generated internal to DFFs

— Upsets occur at the clock edge — analyzed as EndPoint
upsets (already captured into system state)

— Upsets generated between rising clock edges-analyzed
as StartPoint upsets (need to be captured at the next

clock edge)

SSU

(Single Sided
Upset)

Teik

HARRH-
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DFF SEUs: Can Occur at a Clock Edge or {th
Between Rising Clock Edges |

Low: SSU generated in Slave High—Low: Slave Captures its

CLK SET
; CLK
p__J
CLKB
ctke
cLkBAM cLK o
Ledi cLkES reLk

CLK-.1 IEILKB

L
=
&Y
oS
v

Single'Sided! or' A ouble'sided Single'Sided'

High: SSU generated in Master; Low—High: Master Captures
or SET in Slave its SET 9



Summary of Internal DFF SEUs

P(fs) presei= P (fS) prrsev T PPprrseu YPUS) prrser

— SETs generated
In slave when
clock is high

— Frequency
dependent

Percentage of single sided

upsets that occur at clock
edge (low to high) Percentage of single sided

— Frequency dependent: upsets that OCCur between
Master SET gets trapped clock edges

during transition from — Not Frequency dependent:
transparent to hold state Master or slave is in hold
(rising edge of clock) state

— This is considered a state — This is not considered a
change definitive state change
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How Does a StartPoint SEU get Captured
Start Point by an EndPomt’? |

Toiv | Clk =y
DFFT |k@T'1 dly F

T+1
End Pomt
DFF

If DFF flips its state @ time=z:
4ns Tdly = 9.5ns O<z <7 —Taiy

4// The upset has time to get caught...

Probability of capture: 1- (zy., /%)
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Details of Capturing StartPoint DFFs

# StartPoint DFFs

DFF _
j=1

Upset generated internally to ’

El ( Z IBPDFFSEU(j) (1_ ley(j) fS) F)Iogic(j))

\

4

ogic

A _

DFF between clock edges Capture Masking
 SEU generation occurs in a StartPoint between rising clock

edges (BP)rrser)

* Will need to be captured by an EndPoint to affect the

system state

Rising edge

1_ 1 of clock
Between clock
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Synchronous System: CL SET Capture

Start Point
DFFsz' K @T-1

3ns
;O . \SE|/ End Point
| DFF
ﬂ 1ns b T @T
_a B R0
ns ¢ ‘
| 3ns (A XOR B ) AND (C XOR D)
>

If an SET occurs it will need to
-Propagate to an Endpoint

// -Be active during clock edge
[

. —
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Details of Combinatorial Logic SET

Capture
/#Combinator 1alCells
3L 2 (P Porost PogicTuany 1)
\ =1 \ =' —— ——
Generation  ropagation Capture

Logic Masking

CL
- SET Generation (P,,,) occurs between
clock edges

Double Sided - SET Capture occurs at a clock edge
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Putting it All Together: What Do We
Expect from Our Data?

EndPoint
/ aP(fS)DFFSEU(k) t
#StartPoint DFFs StartPOintS
D BPosesery (= Tuy o f5) * Pugi)
z Plogic(k) * j=1
k=EndPoint i
Log?c \ Z(Pgen(i) & Pprop(i) g Plogic(i) g Twidth(i)fs) /
Masking = Combinatorial
Logic

 EndPoint DFFs: Directly proportional to frequency
« StartPoint DFFs: Inversely proportional to frequency

« Combinatorial Logic: Directly proportional to frequency
Helps us study trends. Used to better extrapolate

radiation data for characterizing real designs
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Radiation Test Structures: Windowed Shift
Registers (WSR) and Triple Modular Redundanc
(TMR)

T >T
) NO-TMR AlY wsr 4 Aly wer o
WSR, AlYysr g
- > e > peae > 5o

0l

0l
0l
0l

WSR, 2T

CL: Inverters

- _ Localized-TMR (LTMR)
WSR, lyusr,

o< a > e o al oo
| D SE = _F D ST~ H— D ST r D ST

WS R ( D ¥ o+ D ¥ o+ ( D ¥ o+ ( D ¥ Q

8 c _ ] c _ o c _ o _
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LTMR Failure

A

« SETs from Shared Data Path into
DFFS

 Voters can upset

Data path SETs can be captured by
the LTMR’d DFFs:

gen propP logic Wldthfs
CLR 6
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Using the Model+Data to Analyze
StartPoint and EndPoint SEUs

1.6E-07

1.4E-07

1.2E-07

1.0E-07

8.0E-08

OsgyCmM?/bit)

6.0E-08

Area under 4.0e-08
dashed line is
SET 2.0E-08

contribution
0.0E+00

Microsemi ProASIC3 FPGA:LET = 20.3
NoTMR versus LTMR- checker pattern

DFESEU

' ' ' | ETMR WSR,

1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Presented by Melanie Berg at Radiation and its Effects on Components and Systems (RADEJS@QM@HG¥e(HMﬂber 24-28, 2012 and
published on radhome.gsfc.nasa.gov and nepp.nasa.gov. 18



Conclusions “(A\M

« NASA Goddard REAG has developed a model to
characterize upsets in synchronous designs.

 The characterization for the functional data path
has been presented

« Contrary to conventional theory, frequency
effects are shown for DFFs (EndPoints). However
the model was used to empirically determine, for
this technology, that EndPoint frequency effects

are insignificfant aP(fS)prrseuqe T \
#StartPoint DFFs
#EnAF 9InL DEFS z ( BP(fS)DFFSEU (])(1 - ley(j)fs)) * Plogic(j)) t
z Plogic(k) . j=1
k=1 #CL

x (Pgen * Byrop . * Progic . * Twidtn fs) /
19
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