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Why Worry about Variable SEE Failure Rates? “\Ef“"

e Goal of destructive Single-Event Effects (SEE) Radiation Hardness Assurance
(RHA) is avoiding risk

e Sometimes risk cannot be avoided

— Heritage hardware may have used obsolete test or qualification methods

e Examples: Single-event gate rupture (SEGR) dependence on ion range, Z, etc.; Single-
event Latchup (SEL) susceptibility at cryo...

e Does the risk warrant a redesign
* What about risks to missions already using the hardware.

— Continual pressure from designers to assume more risk
* “Please, please, pretty please! Can’t you run that MOSFET with £10 V on the gate?
* Problems with risk estimation for destructive SEE
— Destructive SEE mechanism models still evolving—so rate estimation is crude

— Every data point represents destruction of an expensive component
kes testing expensive
e Accumulating statistics must be accumulated across many devices

— How do we estimate effects of part-to-part variation on test measurements

— How do we carry out RHA when part-to-part variation it may be dwarfed by Pois
fluctuations on fluence to failure.
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Statistics of Destructive SEE
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* DSEE are Poisson in particle fluence Poisson Distribution
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distributed exponentially with the same 0.1 .
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— Implications for SEE testing —
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* How do we ascertain mean and part-to-
part variation when fluences to failure
are so broadly distributed
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Models of Variability

Model 1: Lognormal variation Model 1: Lognormal variation
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* Let expected fluence to failure vary  Expected fluence is bimodal
— (F*LNORM(F,m,s) —  (F)~0.5*[LNORM, (F,m,,s,)+LNORM,(F,m,,s,)]
— How large must s be before variability — Is bimodality detectable?
detectable? — How much must peaks differ to detect second
— Can we infer or bound s? mode?

— Can we distinguish bimodality from model 1?
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Method

Monte Carlo Study Hyperexponential and moments
Explore problem’s phase space by  Hyperexponential Distribution
randomly sampling points — Mixture of exponential distributions with

For n events, errors scale as n'l/2 different means

Generate 10000 events (1% errors)
and examine convergence of

distribution moments with sample * Method of moments
sizem — Nth moment of distribution p(x)

Nth Momentz_[xN p(x)dx
— 1t moment= mean

— Also called phase distributions
— If phases close, looks exponential

— Small sample size (m<30) is relevant
for SEE testing

— Large sample size (m>30) relevant for
examining bias in sample estimators

— 2M centered moment=variance=c2
— Skew—related to 3™ centered moment

. ) R — Kurtosis—related to 4" centered moment
Introduce increasing variability and

count events detected

— Efficiency=% events detected

— Skew and kurtosis normalized to ¢
* Look at convergence of moments with m

— False triggers—analysis indicates part-to- — Mean,

part variation where there is none — o/u~1 for exponential
— Skew, Kurtosos (usually require large m)



Skew and Kurtosis?

First 2 moments are familiar
— Mean is a location parameter
— Variance/ ¢ measure width
What about skew?

— Negative skew—left tail thicker; mode
to the right of mean

— Positive skew—right tail thicker; mode
to left of mean

Kurtosis—this one gives folks trouble

— Measures relative amount of probability
in peak and tails of distribution

— Convention: Normal has zero kurtosis

— Kurtosis>0: Thicker tails than Normal

— Kurtosis<0: Thinner tails than Normal
Sample skew and kurtosis are biased
estimators of population values

— Excel formulas are bias-corrected
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Weibull forms illustrate higher moments
— s<1:0/u>1, large skew, kurtosis
— s=1: exponential-- o/u =1, skew=2, kurtosis=6
— 5=2.252: 6/u =0.47, large skew, kurtosis=0
— 5=3.6: 6/u >1, skew=0, kurtosis=-0.28

— s$>3.6: o/ increasing, skew increasingly
negative, kurtosis>0 again @s=5.8
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Results: How Challenging is the Problem?
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Monte Carlo runs with 900000 events «  Hyperexponential due to bimodal

reproduces exponential trends well

— Event counts at high failure fluence are
lower, but errors ~10%

distribution distinguishable from
exponential trend
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Results: How Challenging is the Problem?
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0.0001 "'«qﬁ

0.00001

0.1
—Unimodal sLN=0.2
Exponential trend
0.01 -
0.001 e

0 10000 20000 30000 40000 50000 60000

Failure Fluence

Hyperexponential due to lognormal part-
to-part variation with lognormal std.
deviation sLN=0.2 not distinguishable

from exponential trend

— Cannot detect differences in fluence to failure
on order of 20%
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e Hyperexponential due to lognormal
part-to-part variation with lognormal
std. deviation sLN=0.5 distinguishable
from exponential trend

— Differences are subtle

— Can barely detect differences in fluence to
failure on order of 53%

Presented by Ray Ladbury at the 2012 SEE Symposium, April 3-5, 2012, LaJolla, CA



Large Differences Are Detectable
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* When sLN=1, part-to-part variation is comparable in scale to Poisson

fluctuations in fluence to failure
— Distribution of fluence to failure is easily distinguishable from exponential trend.
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Sample Mean a Good Estimator
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For exponential variation with «  For variable mean (sLN=0.5),

constant mean

— Sample mean underpredicts mean slightly
for small samples, but agreement good

convergence of sample mean good, but

— Significant overestimates possible for small
sample size
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Sample Standard Deviation Converges Slowl|

Sample St. Deviation of Fluence to Failure

st I
—8 15 ///
20 30 /

0 0.2

0.4 0.6

Cumulative Probability

0.8

Sample St. Deviation of Fluence to Failure

50000
45000
40000 SampleSize /
35000 3 —° /
30000 — —8 15 -
25000 20 30
20000
15000
10000 — ‘/’i”’¢¢¢7
5000 ==
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Cumulative Probability

Exponential with constant mean

— Sample Standard deviation underpredicts
population std. dev.

— Convergence is slower than for mean

For variable mean (sLN=0.5), little
difference from true exponential case,
except for large values.

— Significant overestimates possible for small
sample size
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o/u Distinguishes Exponential from Hyperexponential

Ratio: St. Dev to Mean
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For Sample size 15, assume o/p>1.05 e  For Sample size 15, assume o/pu>1.11
implies large part-to-part variation implies large part-to-part variation
— Catches 50% of real cases — Catches 50% of real cases
— Unfortunately: 26% of true — Unfortunately: 16% of true
exponential cases cause false exponential cases cause false triggers

triggers
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Sample Skew Less Effective Discriminator

Sample Skew
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For ?amlple size 15, assume Skew>1.54 e For Sample size 15, assume o/p>1.9
Implies large part-to-part variation implies large part-to-part variation
— Catches 50% of real cases _ Catches 50% of real cases
— Unfortunately: 32% of true — Unfortunately: 26% of true
fﬁggg&”t'al cases cause false exponential cases cause false triggers
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RHA Implications

Small part-to-part variation will not be detectable for reasonable sample
sizes due to Poisson fluctuations in fluence to failure.

Mean fluence to failure converges nicely even for moderate sample size
Standard Deviation converges more slowly
Higher moments cannot be estimated reliably for sample sizes <30-50

Detecting part-to-part variation efficiently results in false positives
— Ratio o/u is most effective discriminator in study
— Skew is less effective due to systematic underestimation for small sample sizes
— Kurtosis is ineffective due to systematic underestimation for small sample sizes

Serious distribution pathologies in part-to-part variation
(bimodality) can be detected if severe enough

Variability and pathologies can be bounded by Monte Carlo
techniques.



Conclusions and Avenues forProgress

e Current RHA approaches to SEGR do a poor job of evaluating risk.

— Usually overly conservative, but,
— Poorly understood mechanisms sometimes result in mistakes

 Improved approach to risk estimation possible, but complicated
— Part-to-part variation in destructive SEE hard to measure due to Poisson nature
e Undetectable if not large
e Likely results in false alarms

— Other Questions
* Isvariability greatest near SEGR threshold?
* Isvariability different for different LETs? Different lons? Different Range?

e Other Approaches
— Bayesian treatment with prior modeled on pre-rad Breakdown VGS distribution

— Physics-based modeling

— All approaches suggest variation of Lethal lon Approach (Titus-1999), (Lauenstein-
2010)



