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Nonvolatile Memories

• Flash (NAND, NOR)

• Nanocrystal Flash

• Magnetic Memory (MRAM)

• Phase Change--Chalcogenide, (CRAM)

• Ferroelectric (FRAM)

• CNT
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• CNT

Flash Background

Disadvantages
• Slow programming
• Wear outWear out
• Scaling/retention

Advantages
• Cost per bit
• Low power
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Bottom Line:  Heavily used in hand-held, 
battery-powered consumer electronics 
(cell phones, iPods, digital cameras, MP3)



To be published in the Hardened Electronics and Radiation Technology (HEART) Conference Proceedings, 
December, 2011 and on nepp.nas.gov web site. 3

Floating Gate Transistor
Control Gate

FG

p - body

Source Drain

n+ n+
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HEART Conference, Orlando FL, 1 April 2011

injection of electrons into FG
 Erase operation—FN injection of electrons from FG 

to substrate
 Repeated P/E operations cause damage to tunnel oxide
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Flash Architectures
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NAND NOR
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Flash Memory Cells
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Substrate
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Reliability/Endurance Study
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Dose (krads (SiO2))

No clear indication that radiation exposure reduces 
flash endurance

Micron  4Gb NAND Flash
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Retention Failures
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Micron 8G NAND 
105 P/E Cycles
Unirradiated Control

Micron 8G NAND
105 P/E Cycles
50 krads (SiO2)
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Flash SEU Compared to Volatile Memory  
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“Destructive Current Spikes”

107 A i / 2 LET 85 107 Au ions/cm2  LET=85
 Flux in space is 1 ion/cm2

every 7200 years
 Five spikes is one every 

2x106 ions, one event every
14x109 years (interval since
Big Bang!)

 Failed to duplicate these 
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p
spikes with different test 
equipment
 If we had duplicated them on the ground, they still would not 

be real in space.
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Phase Change Highlights

 Heavy ion testing performed at TAMU
 Chalcogenide storage element appeared to be 

“bullet proof”
 Unhardened commercial substrate suffered SEL 
 TID better than 100 krads (SiO2)
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Radiation Testing—Lessons 
Learned

 Angular effects matter—differences observed between normal 
and high angle, also between tilt and roll at same angle
 Destructive effects in flash occur primarily in high voltage Program

or Erase operations—have to emphasize
 Try to keep flux low enough to avoid collective effects, but want 

high fluence for good statistics—trade-offs to optimize beam time
 Have to estimate rate in space for effects observed in testing, e.g.,

fl i t LET>60 i l th 1 i / 2 h d d

14

flux in space at LET>60 is less than 1 ion/cm2 per hundred years
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Conclusions

• NAND flash is attractive for space 
applications, because of cost, weight, power

• TID response is better than 100 krad for some 
parts, and seems to improve with scaling

• SEE error rate appears to be acceptably low
•Destructive events can occur but rate in
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•Destructive events can occur, but rate in 
space would be low

• SEFI recovery techniques not yet determined,
but rate appears manageable
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