
 

  

Abstract— We investigate model dependence of bounding 

estimates of TID degradation as a function of sample size and 

statistical model and develop a method for selecting the model 

with greatest predictive power.  

 

Index Terms—radiation effects, reliability estimation, quality 

assurance  

I. INTRODUCTION 

Strategies that allow Radiation Lot Acceptance Testing 

(RLAT) to be waived based on a part’s historical performance 

can be among the most controversial aspects of Radiation 

Hardness Assurance (RHA) methodologies for Total Ionizing 

Dose (TID) degradation.  In part, this is because historical data 

are usually less representative of flight-lot performance than 

RLAT data.  In some cases (e.g. process changes, multiple 

foundries, bad lots), historical data may even be misleading.   

While risks associated with bad lots of parts and process 

changes can be estimated using historical data,[1] only RLAT 

offers high assurance of detecting such threats.  However, even 

when historical data are representative of flight lots, strategies 

to compensate for the use of less representative data can 

themselves lead to inconsistent results.   

A common strategy when using historical data for 

qualification is to increase the required radiation design 

margin (RDM=failure dose/mission dose) above the level 

usually required when qualification is based on RLAT.  For 

instance, if RLAT requires RDM≥2, qualification using 

historical data would require a larger RDM>α>>2.  

Methods for determining the minimum allowable RDM, α, 

split into two categories.  Design Margin Breakpoint 

(DMBP)[2] methods base α on engineering judgment.  While 

the choice of α is subjective, these methods are the only option 

for small data sets that may not fully reflect part-to-part and 

lot-to-lot variation.  For larger datasets, statistical methods 

 
Manuscript received July 20, 2009. The authors thank NASA’s Electronic 

Parts and Packaging (NEPP) program and the Landsat Data Continuity 

Mission for support of this research.  

R. Ladbury is with NASA Goddard Space Flight Center, Greenbelt, MD 

20771, USA (phone: 301-286-1030; fax: 301-286-4699; e-mail: 

Raymond.L.Ladbury.1@gsfc.nasa.gov).  

J. L. Gorelick is an indeptndent consultant in Los Angeles, CA USA (e-

mail: j.l.gorelick@att.net).  

S. S. McClure is with NASA Jet Propulsion Laboratories, 

Pasadena, CA 91109 (telephone: 818 354 0482, email: 

Steven.S.Mcclure@jpl.nasa.gov) 

 

(e.g. the Parts Characterization Criterion (PCC)[3] and 

Aggregate[1] methods) base α on a fit of historical failure 

doses to an assumed form—usually normal or lognormal.  

Usually, α is chosen so that we have substantial confidence 

(for example, 90%) that a given percentage (at least 99%, say) 

of parts will pass at the mission dose.   (In other words we 

want the mission dose to coincide with the dose at which 99% 

of parts will pass with 90% confidence—D99/90.).  Usually, 

DMBP RDMs must bound those from statistical methods, 

since the statistically determined α’s apply to a specific part, 

while α for DMBP methods  must apply for a broad range of 

different parts.   

However, RHA methods can differ on the appropriate value 

for α, on RDM definition, on historical data quality and 

quantity requirements, or even on the definition of failure.  

These differences can lead to controversy for large flight 

projects with multiple partners, especially when each partner 

has a significant investment in product heritage.  The situation 

is exacerbated by a lack of systematic studies of how the above 

differences affect the efficacy of the different methodologies, 

of what margins are adequate or of how to optimize methods 

for determining such margins. 

In this work, we examine how dataset size and statistical 

model affect bounding estimates for various RHA methods and 

develop techniques for comparing the performance of different 

methodologies.  We do so by examining part-to-part and lot-

to-lot variability in common linear bipolar microcircuits for 

which we have long time series of RLAT data.  We will see 

that while lot-to-lot variation can be bounded by moderate 

RDM (3<α<4); some parts exhibit large lot-to-lot variability 

and seem to require α significantly larger than those typical of 

many DMBP methodologies.  However, additional analysis 

reveals that while in some cases this high variability results 

from pathological behavior in the part’s failure distribution, in 

other cases, the part’s failure behavior is simply more 

complicated than can be reflected by the simple statistical 

models used by most RHA regimes.  In the latter case, a more 

sophisticated statistical model can yield a much lower α. 

II. METHODOLOGY 

 We focus on a few part types that illustrate the behaviors 

discussed above.  Our time series data for these parts come 

from the Boeing Space and Intelligent Systems (BSIS) 

radiation database.  Data were gathered during normal RLAT. 

Consistent test methods per Mil-Std. 883 Method 1019 

allowed analysis across lots, and consistent procurement 
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specifications minimized extraneous sources of variability (e.g. 

different fabrication facilities, etc.).  Table I lists the parts used 

in this study.  The RH1014 is an example of a part with well 

behaved lot-to-lot variability.  The Analog Devices AD590 

temperature transducer (packaged in a flat pack) and OP484 

quad op amp show large lot-to-lot variation.  Finally, the 

National Semiconductor LM111 voltage comparator and 

Analog Devices OPO7 op amp show large lot-to-lot variation, 

but with fewer pathologies than the OP484 and AD590.  All 

parts were tested at standard dose rates except the AD590, 

which was tested at 0.01 rads(Si)/s.  Dose rates were consistent 

over all tests.  For the RH1014, parametric shifts are reported 

for device 4 in the quad package, while for the OP484, 

parametric shifts reported are for device 1 in the quad package. 

 
TABLE I: PARTS USED IN THE STUDY 

 

Manufacturer

Part # of 

Lots 

Guarantee 

krad(Si)

Dose Levels 

krad(Si) 

Sensitive 

Parameter

Linear 

Technologies

RH1014 38 100 60,100,200 IB (# 4) 

Analog Devices  OP484 9 100 100, 300 IB 

Analog Devices

AD590 10 N/A 5, 10, 15, 20 

(low doserate) 

Ambient 

Error 

National Semi. LM111 9 100 30, 60 IB

Analog Devices OP07 11 100 100, 300 IB (#1)
 

We define α as the product of two factors, RDMRLAT and 

RDMHIST.  The former factor is the RDM that we would 

require if we had RLAT for the flight lot (we take RDMRLAT=2 

for concreteness).  The latter factor accounts for the lot-to-lot 

variation in the historical data.  Thus, α is the total martin to 

be applied to historical data to avoid compromising reliability 

compared to the normal RDMRLAT applied to RLAT data. 

We next look at simple ways of defining RDMHIST.  In 

essence, we ask what value of RDMHIST we would need to 

bound degradation for our softest lot if we based our failure 

estimate on the mean failure level of the hardest lot.  This 

leads to widely ranging estimates of α from one part type to 

another.  We then explore the causes underlying the variability 

for different part types and whether more sophisticated 

statistical analyses can yield more consistent results.   

III. LOT-TO-LOT VARIABILITY AND RDM 

We can measure lot-to-lot variability in TID degradation in 

a number of ways.  Perhaps the simplest is to look at the ratio 

of the TID induced shift of a parameter for one lot to that for 

another.  This does not even require that we define a criterion 

for parametric failure.  If we do define such a criterion, we can 

look at the dose at which each part in a lot fulfills this failure 

criterion and define the mean failure level (dose) for the lot.  

The ratio of the mean failure levels then provides another 

measure of lot-to-lot variation.   In Table II, we use such ratios 

to estimate RDMHIST for each of our parts.  Column 2 gives the 

ratio of the mean parametric degradation for the softest lot 

(SL) to that for the hardest lot.  Column 3 lists the criteria we 

used to define parametric failure, and column 4 gives the ratio 

of the mean doses where these failure criteria were met (this 

time for the hardest lot to the softest lot).  In a similar manner, 

one can use the ratios of other statistical quantities—e.g. the 

first (lowest-dose) failure for a lot, D99/90 for a lot, etc.  

However, these metrics yield similar trends.  
TABLE II: LOT-TO-LOT VARIATION 

 Part # Mean Parametric ∆ 

Ratio: SL to HL 

Failure 

Criterion

Mean Failure Level 

Ratio: HL to SL

RH1014 ~1.9 (@100 krad(Si)) ∆Ibias>50 nA 1.6

OP484 ~9 (@100 krad(Si)) ∆Iin>2 µA 9.3

AD590 ~10 (@15 krad(Si)) Amb. Err> 5°C 10

LM111 ~3.4 (@60 krad(Si)) ∆Ibin+>300 nA 3.4

OP07 ~3.4 (@300 krad(Si)) ∆Iin>40 nA 4.2
 

 

Multiplying the values in columns 2 or 4 by RDMRLAT =2, 

this suggests that 3<α<4 would be adequate to bound 

degradation for the RH1014. The OP07 and LM111 would 

require α~8, and the AD590 and OP484 would require α~20.   

Figure 1 shows that basing our mean failure level on 2 or 3 

lots of data can reduce the spread in our estimates for α for the 

OP07, LM111 and even the AD590.  However, it does not 

help appreciably for the RH1014 or the OP484.  This raises 

the question of what accounts for the widely varying values we 

obtain for α with our simple statistical analysis, and whether a 

more sophisticated analysis could produce results that were 

more consistent from part type to part type.  To examine this 

question we began by carrying out an exploratory data analysis 

(EDA) of the lot-to-lot variation for the different parts in our 

study.   
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Fig.1 Required margin, α decreases as more lots of historical data are added 

unless the data are already sufficient to characterize lot-to-lot variation (e.g. 

RH1014) or lot-to-lot variation is pathological (e.g. OP484). 

IV. EXPLORATORY DATA ANALYSIS 

Our exploratory data analysis sought to elucidate the factors 

underlying the large spread in our estimated α for the parts in 

our study.  We looked in the data time series for correlations, 

time dependence or other trends, as well as failure distribution 

pathologies (e.g. bimodality or thick tails). Except for the 

RH1014, each part poses challenges that lead to systematic 

errors if ignored in RHA analyses. (See figures 2-6.) 

Failure levels for the RH1014 are unimodal with no 



 

evidence of bad lots or outliers.  The distributions of both 

mean lot failure levels and standard deviations give a good fit 

to a lognormal distribution.  This implies that this part would 

be amenable to most statistical analyses and that qualification 

using historical data would pose minimal risks. 

The lots in the LM111 sample show bimodality from lot to 

lot, though not from part-to-part in a lot.[5]  Attempting to fit 

the data to a unimodal distribution exaggerates the distribution 

width, and this factor is largely responsible for the high values 

of α for this part.  Moreover, if we lump data across lots to a 

single distribution, we will get a poor fit, since the bimodality 

manifests across lots rather than within a lot.  The OP07 shows 

a linear trend between mean lot failure level µ and standard 

deviation σ. Since fitting all data to a single distribution 

obscures this correlation, this also will overestimate α.  The 

role of systematic errors due to the simplicity of the statistical 

models in producing large estimates of lot-to-lot variation 

suggests that more complicated models could yield better 

bounds on α. 

In contrast, lot-to-lot variability of the OP484 and AD590 is 

clearly pathological.  As noted in reference [1], the OP484 

shows bimodality in its failure distribution not just from lot to 

lot, but from part to part within a lot. Moreover, in 2 of 9 lots 

Iin saturated below the lowest test level of 100 krad(Si), while 

the other 7 lots do not show saturation even at 300 krad(Si). 

This makes it difficult even to define failure criteria that are 

relevant across all lots.  The AD590 also exhibits large lot-to-

lot variability in its degradation, although the data appear 

thick-tailed rather than bimodal.  
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Fig. 2 Means and standard deviations (σ) of RH1014 lot failure doses are 

well behaved and uncorrelated. 
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Fig.3 Mean lot failure doses for the LM111 look bimodal.  In contrast to some 

studies[4], failures in each lot were unimodal.  
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Fig.4 Lot mean failure dose µ and standard deviation σ are linearly correlated 

for the OP07. 

 

To take into account the trends and features revealed by our 

EDA, we need a more complicated statistical model—one that 

can reflect lot-to-lot bimodality of the LM111 and the µ-σ 

correlation seen for the OP07.  This raises the question of how 

we determine whether we have sufficient data to constrain 

such a model and how we determine whether the performance 

of this model is sufficiently improved to merit the added 

complexity.  However, since we will be comparing models 

with different levels of complexity (e.g. number of 

parameters), our performance metric will have to go beyond 

simple “goodness of fit” criteria such as Least-Squares, χ2 or 

likelihood.  We next consider 3 different models for our data 

and how to select the model that best explains our lot-to-lot 

variability and maximizes predictive power. 
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Fig. 5 Highly variable parametric degradation of OP484s prohibits even 

defining a failure criterion that is meaningful over all lots.  
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Fig.6 AD590 mean lot failures occur from 8.8-59 krad(Si). The distribution is 

skewed right, so a D99/90 to the three best lots bounds the WC lot. 



 

V. STATISTICAL METHODS 

We consider 3 different models for our data: 

1) Failures for each lot are distributed lognormally, but 

mean and standard deviation are unrelated from lot to 

lot.[5]  This means historical data cannot predict 

future lot behavior and so each lot requires RLAT.  

This model requires 2n parameters to describe n lots.  

2) Failures across all lots follow a single, unimodal 

lognormal distribution.  This is equivalent to the 

PCC[3] or Aggregate[1] method.  Two parameters 

describe the data, regardless of the number of lots n. 

3) Each lot’s failures are distributed lognormally as in 

model 1).  The resulting fit parameters in turn follow 

well behaved (lognormal) distributions.  Four 

parameters (2 each for the lognormal mean and 

standard-deviation distributions) describe the data for 

all n lots. Model 3 is flexible enough that we can 

impose correlations found in EDA as constraints.  

To find the vector of parameters (ΘΘΘΘBF) for each model that 

best fits the failure data X, we maximize the likelihood 

  

                        (1) 

 

for the failure model with respect to the parameter vector ΘΘΘΘ for 

given failure doses X.  Since the likelihood for a given 

parameter vector ΘΘΘΘ is just the product of the probabilities of 

our data given those parameters, the vector that maximizes the 

likelihood can be thought of as the most probable for that 

distribution form given our data.  

However, the rapidity with which the likelihood decreases 

as we move away from the maximum also gives us 

information.  In particular we can define confidence intervals 

for the distribution fit parameters using the relation between 

the χ2
 distribution and the likelihood ratio: 

 

                          (2) 

 

where the number of degrees of freedom for the χ2
 distribution 

is equal to the number of parameters in the model, k.   

 For concreteness, we define RDMHIST as the ratio of the 

mode of the failure distribution (DFmode) to D99/90 given by the 

model, so that:  

                      (3) 

 

This definition is analogous to that used for the PCC method 

and allows direct comparison of α for the 3 models.  However, 

in reality, the exact definition is not critical, since reliability 

begins to drop rapidly once α drops below some critical value.   

For Model 2, our use of likelihood means we will be using 

the Aggregate methodology.[1]  However, we have determined 

that this yields equivalent results to the PCC method.   

As mentioned above, although we use likelihood to 

determine best-fit values and confidence intervals for our 

models, likelihood can not be used to compare models with 

different numbers of parameters, k.  More complicated models 

will usually fit the data better than simpler ones whether or not 

the added complexity adds to our understanding. (For 

example, even if 3 data points trend linearly, a quadratic form 

gives an exact fit while actually giving us less useful 

information.)  To address this model selection problem, we use 

Hirotugu Akaike’s information criterion (AIC)[6]:  

                      (4) 

Since datasets in RHA tend to be small (<100 lots), we will 

use the form of AIC corrected for small sample size[7]: 

 

                      (5)  

AICc is comprised of 2 terms.  The first term, proportional 

to the negative log likelihood, decreases as the model’s 

goodness of fit to the data improves.  The other term increases 

roughly linearly with the number of model parameters, k.  

Thus, models with small AICc account for the data 

economically (i.e. fewer parameters), while those with large 

AIC either give a poor fit or are unnecessarily complicated.   

To justify using a more complicated model (higher k), the 

goodness of fit (likelihood) must increase exponentially in k.  

Thus, AIC expresses Occam’s razor, limiting the complexity 

of the model to that needed to explain the data.  However, AIC 

actually has a more fundamental origin:  It is an unbiased 

estimator for the Kullback-Liebler (K-L) divergence[8]—a 

measure of a model’s deviation from the true generating 

model.  Minimizing the K-L divergence (or AIC) identifies the 

model that is closest to the real one, and this model will have 

the greatest predictive power.   

Since its introduction, AIC has become a standard technique 

of model selection, with applications ranging from astronomy 

to microbiology and from software reliability to satellite 

design.[9]  An idea of the usefulness of AIC can be gained 

from the fact that a Google Scholar search on 9/5/2009 yielded 

over 9800 citations of Akaike’a 1974 paper (reference 6). 

Because the RH1014 dataset is the best behaved and the 

largest, we begin by applying our model-selection 

methodology to this dataset to see if it yields reasonable 

results.  Figure 7 shows that AICc begins to favor model 3 (> 

99% significance) for as few as 4 lots of data.  Moreover, as 

we add data, the average AICc per lot added decreases.  This 

means that the predictive power of the model is increasing.  In 

contrast, there is no significant trend in Model 1 or Model 2.  

This is easy to understand for Model 1, where we fit each lot 

individually, making no use of past history.  In contrast, 

because Model 2 assumes a single, unimodal failure 

distribution for all lots, it is not sufficiently sophisticated to 

use all of the information as we add data for more lots.   

For the RH1014, the required margin  α for model 3 

converges to ~3—about the same level as for the Aggregate 

Method—but does so more quickly.  (See figure 8.)  Thus, 

although we could have determined an appropriate value for α 

by either model 2 or model 3, AICc indicates that model 3 

more closely captures the part-to-part and lot-to-lot variation 

for the RH1014.  Model 3 also gives us additional information, 

including the degree to which the mean failure level and the 

width about the mean (e.g. standard deviation) vary from lot to 
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lot.  This important diagnostic could alert us to process 

changes, bad lots, etc. as we add more data to our sample.   
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Fig. 7 Even for 4 lots of RH1014 data, Model 3’s AICc is significantly less 

than for the other models, indicating that it will have more predictive power 

than the other models.  Model 3’s AICc also decreases as we add data, 

indicating it is better able to use the information in the data. 

 

The advantage of model 3 is more evident for parts with 

complicated failure distributions—e.g. the OP07 with its 

roughly linear trend between mean lot failure level and 

standard deviation. Starting with model 3 applied to the 

lognormal fit parameters for individual OP07 lots, we capture 

the linear trend between lot mean failure and standard 

deviation seen in figure 4 as a constraint on the distribution of 

σln.  Specifically, we require σln to be centered such that the 

trend holds on average, but allow the width about this central 

tendency to vary to give the best fit to the data.  The resulting 

3-parameter model significantly outperforms both Model 1 and 

Model 2 based on AICc.   
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Fig. 8 For parts with well behaved failure distributions (e.g. RH1014), the 

Aggregate and 4-parameter modes yield equivalent values for α.  However, 

for parts with complicated failure distributions, the more complicated model 

can reduce the estimate for α by ~2x from 7-9 to about 4. 

 

To assess the bimodality of the LM111 we need a more 

complicated model.  The EDA reveals two modes, but there is 

no clear difference in the mode widths.  As such, we require 7 

parameters for this model—two for the lognormal mean of 

each mode, two for the lognormal standard deviation and one 

parameter to specify the relative probabilities of each mode.  

This model, which reflects the bimodal lot-to-lot variability for 

LM111s, outperforms the aggregate model.  The size of the 

softer mode is not less than a quarter and not more than twice 

the higher mode at the 90% CL based on the 9 lots of data 

available.  For purposes of hardness assurance, we must 

assume that the flight lot belongs to the lower mode.  Taking 

the ratio of the D99/90 to the lower mode as our measure of lot-

to-lot variation, we estimate α~4—roughly a factor of 2 less 

than the Aggregate method. 

Although inference of lot-to-lot variability using the 

Aggregate and PCC methods suggested α>8-9 would be 

needed to bound degradation for the LM111 and OP07, more 

sophisticated statistical models show that α~4 is a more 

reasonable lower bound on margin needed to achieve Ps=99% 

@ 90%  confidence. Figures 9 and 10 show that for α<4, Ps at 

the 90% confidence level and the confidence level we have in 

Ps =99% can decrease rapidly.    

The introduction of model 3 allows us to handle not just 

well behaved data like that for the RH1014, but also data that 

pose challenges for conventional RHA methodologies.  We 

can generalize model 3 by adding constraints or by adding 

additional modes (indeed, model 1 above can be viewed as a 

generalization where we add a mode for each additional lot).  

Similarly, if we had enough data, we could even treat failure 

distributions like that for the OP484 that have multiple modes 

within a wafer lot.   
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Fig. 9 For margins below 4, probability of success (Ps) (or confidence) 

decrease rapidly with decreasing required margin.    

VI. DATA IN THE REAL WORLD 

The techniques and models outlined above yield insight into 

the importance of part-to-part and lot-to-lot variability for the 

parts studied.  However, in most part qualification efforts, our 

historical data will be much more limited.  The historical data 

that do exist may have been gathered using variable test 

methods and conditions, and the criteria for failure may be 

inconsistent from test to test.  This raises the question of how 

we can apply these methods to generic data and whether the 

conclusions we have drawn (e.g. αmin~4) remain valid.  To 

investigate the feasibility of statistical analysis of generic data, 

we conducted a meta-analysis of data for Analog Devices Op 

amps from the GSFC Radhome database.[10] 



 

 Part 

Type

# 

lots

Mean Lot 

Fail. Dose µ

Inter-lot σ 

of µ 

Ratio: Worst 

to Best µ

α based 

on means

OP27 3 29.5 krad(Si) 9 1.85 3.7

OP400 4 5.3 krad(Si) 2.3 3.2 6.4

OP77 3 16.4 krad(Si) 5.4 2 4
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Fig. 10 Decreasing design margin (cone heights) decreases both probability of 

success (Ps) and the confidence we have in that probability.  The figures 

above present the effects of decreasing margin on Ps at the 90% CL (dark 

cones) and the confidence level for Ps=99% (white cones) for the OP07 

(upper) and LM111 (lower).  The 99/90 PL is shown in grey. 

 

The first task was to adopt a definition of failure dose we 

could apply unambiguously across all tests.  The two most 

generally applicable definitions are dose of functional failure 

and the dose at which the first parameter for the device falls 

out of manufacturer’s specifications.  Since most devices are 

not tested to functional failure, we adopted the definition of 

failure dose as that where the first device parameter falls out of 

manufacturer’s specifications.  One potential disadvantage of 

this definition is that because it looks at absolute values of the 

parameters rather than their changes, one is sensitive to pre-

radiation variability as well as radiation response.  As such it is 

important to check for pre-rad variability. 

Table III lists the 3 op amps with at least 3 test reports from 

a search of the Radhome database.  Because we have limited 

statistics and limited confidence in the consistency of our test 

method from lot to lot, we estimate RDMHIST by taking the 

ratio of mean failure levels for the hardest to the softest lot for 

each part (as in section III).  By this criterion, only the OP400 

variation would require α>4.  However, with a mean lot failure 

dose of 5.3 krad(Si) and a standard deviation of 2.3, this part 

would be an unlikely candidate for historical data 

qualification.  Other studies have also seen first parametric 

failure for the OP400 at between 3 and 7 krad(Si).[11]   

 

 

 

 

 

 
TABLE III: ESTIMATED MINIMUM RDM α 

VII. MODEL SELECTION AND MODEL AVERAGING 

In our current study, AICc strongly favored Model 3 over 

the other models.  However, this is not always the case.  When 

two or models have comparable values of AICc for a dataset, 

which one should we use.  One approach is to take the model 

that gives the more conservative bound.   

However, since AICc estimates a deviation (Kullbach-

Liebler information) from the true model, a situation in which 

more than one model achieves roughly the same AICc 

indicates that each model captures part of the truth.  One 

way[9] to capture as much information as possible is to 

average the results for all the theories, weighting the result for 

model i according to its Akaike weight, wi 
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=

m
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jiiw

1

))2/exp(/()2/exp(        (6) 

where ∆j=AICj-AICmin gives the AIC distance.  Such a 

weighted average often outperforms the results of any single 

model.  If both distributions have the same number of 

parameters, the average reduces to weighting the results by 

their likelihood.   However, Akaike weights allow combination 

of results for models with different levels of complexity.   

VIII. FUTURE WORK AND CONCLUSIONS 

Although waiving RLAT based on historical data always 

poses some risks, some TID RHA regimes are more effective 

than others at mitigating these risks.  In this study, we have 

looked at one aspect of such mitigation—increasing the design 

margin for parts qualified with historical data to compensate 

for the less representative nature of historical data compared to 

RLAT data.  In particular, we sought to determine the 

minimum margin α needed to ensure that we would not 

compromise reliability by use of historical data and to see how 

α changes as we add more data.  In the process, we also found 

that the statistical model used to analyze the data could change 

our answer by up to a factor of 2.  This led us to develop a 

method for selecting the best-performing model for our 

dataset.  The results of our efforts suggest the following 

guidelines for TID RHA methodologies allowing qualification 

based on historical data: 

1) Historical qualification should be attempted only 

when lot-to-lot and part-to-part variations are well 

behaved.  Data for several lots (>3) are necessary to 

identify failure distribution pathologies and trends as 

well as for reliable estimation of lot-to-lot variability.   

2) Minimum RDM, α, can be viewed as the product of 

two parts: the usual value used when RLAT data are 



 

available RDMRLAT (taken here to be 2) and a term 

quantifying lot-to-lot variability of historical data. 

3) For DMBP methodologies, allowing RLAT to be 

waived for RDM<4 can significantly increase risk 

and decrease confidence for the parts so qualified. 

4) Parts that have well behaved failure distributions but 

seem to exhibit high lot-to-lot variation may require 

analysis with a more complicated statistical model 

capable of reflecting trends or pathologies in the lot-

to-lot variation of the parts. 

5) Even modest samples of historical data (≥ 4 lots) can 

sometimes support more complicated statistical 

analyses than those typically carried out in RHA 

methodologies.  This increases the information that 

can be inferred from the historical data. 

6) Parts with low mean or broadly varying TID hardness 

are unsuitable candidates for qualification using 

historical data alone.   

7) Provenance of historical data is crucial to effective 

historical qualification.  Unless we resolve questions 

of foundry origin and process changes, the historical 

data may not represent of flight-lot performance.   

In addition to the above guidelines, the analyses presented 

here demonstrate that even for modest datasets (3-4 lots), 

several statistical models can be applied and the appropriate 

model selected using criteria such as AIC. More complicated 

models offer greater flexibility to reflect features of real failure 

distributions and trends revealed during exploratory data 

analysis.  They can also provide separate estimates of lot-to-lot 

and part-to-part variation, and so could be important for 

quality assurance and facilitate dynamical modeling of TID 

degradation.   In addition, the use of likelihood not only 

facilitates model selection, but also model averaging and 

investigation of model dependence of RHA results.   

Perhaps most important, the techniques discussed here offer 

a means of comparing RHA strategies with very different 

statistical properties.  For instance, how does a strategy 

requiring 5× margin on the worst-performing part in a 3 lot 

sample compare to one requiring 4× margin on the 99/90 PL 

for a 4 lot sample?  This facilitates consistent risk reduction 

across subsystems designed by different vendors with different 

RHA methodologies.  

Finally, likelihood techniques are also amenable to 

application of Bayesian RHA methodologies.  Because 

Bayesian methods represent the most efficient way of 

combining diverse types of information pertaining to a part’s 

radiation performance, they are promising candidates for 

improving risk reduction and efficiency for TID RHA. 
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