

Memories and NASA Spacecraft: Part 2 – Future Developments

Kenneth A. LaBel Co- Manager, NASA Electronic Parts and Packaging (NEPP) Program NASA/GSFC ken.label@nasa.gov 301-286-9936 http://nepp.nasa.gov Timothy Oldham, Dell/PSGS – NASA/GSFC

Abstract

 In this presentation, we delineate the NASA Electronic Parts and Packaging (NEPP) approach to future NVM evaluation and qualification efforts

Outline of Presentation

- NEPP Overview
- NEPP General FY11 Plans
- NEPP and NVMs

NEPP Overview

- NEPP supports all of NASA for >20 years
 - 7 NASA Centers and JPL actively participate
- The NEPP Program focuses on the reliability aspects of electronic devices
 - Three prime technical areas: Parts (die), Packaging, and Radiation
- Alternately, reliability may be viewed as:
 - Lifetime, inherent failure and design issues related to the electronic parts technology and packaging,
 - Effects of space radiation and the space environment on these technologies, and
 - Creation and maintenance of the assurance support infrastructure required for mission success.
- NEPP does not qualify specific devices, but determines HOW to qualify as well as investigating new radiation/reliability concerns

Electrical overstress failure – in a commercial electronic device

NEPP Works Two Sides of the Equation

- Assurance
 - Issues that are applicable to space systems being designed and built (i.e., currently available technologies)
 - Examples
 - Cracked capacitors
 - DC-DC converter reliability
 - Enhanced Low Dose Rate Sensitivity (ELDRS)
 - Communication infrastructure via website and working groups
 - NASA Electronic Parts Assurance Group (NEPAG)
 - Audit and review support

- New electronics technology
 - Issues that are applicable to the next generation of space systems in conceptualization or preliminary design
 - Examples
 - 45-90 nm CMOS
 - SiGe
 - State-of-the-art FPGAs
 - Collaboration with manufacturers and government programs for test, evaluation, and modeling
 - Development of new predictive performance tools

The NEPP Program

The 90/90 Goal

The 90/90 Goal - Example

NEPP Has a Wide Range of Efforts

- Tasks vary extensively in the technologies of interest
 - Building blocks like capacitors
 - Standard products like DC-DC Converters, linear bipolar devices, and A-to-D Converters
 - New commercial devices such as FPGAs and memories
 - Test structures on emerging commercial or radiation hardened technologies
 - Specialized electronics such as IR arrays and fiber optics
 - New assurance methods and investigations
- Currently in FY11 planning cycle
 - PRELIMINARY PLANS FOLLOW
 - Active devices only shown (packaging, NEPAG not shown)

FY11 Radiation Plans for NEPP Core (1)

Core Areas are Bubbles Boxes underneath are variable tasks in each core

Legend
DoD and NASA funded
NASA-only funded
Overquide

NEPP Research Categories – Active Electronics

FY11 Radiation Plans for NEPP Core (2)

Core Areas are Bubbles Boxes underneath are variable tasks in each core

Legend
DoD and NASA funded
NASA-only funded
Overguide

NEPP Research Categories – Hardness Assurance

FY11 Parts Plans for NEPP Core (1)

Core Areas are Bubbles Boxes underneath are variable tasks in each core

NEPP Research Categories – Parts Assurance

FY11 Parts Plans for NEPP Core (2)

Core Areas are Bubbles Boxes underneath are variable tasks in each core

NEPP Research Categories – Parts Assurance

NEPP and Memories

- Top level agenda
 - Evaluate scaled commercial SDRAMs and NVMs
 - Radiation tests first
 - If reasonable, reliability and combined radiation/reliability
 - Work with new memory technologies and manufacturers considering entry into Mil/Aero market
 - PCM
 - MRAM
 - RRAM
 - DDR3, and so on
 - We do not QUALIFY devices, but evaluate suitability of devices and determine appropriate qualification methods and physics of failure

NEPP Radiation Evaluations - NVM

- Commercial Flash Memories
 - Manufacturers evaluated (1-32 Gb per device)
 - Micron, Samsung, Hynix, ...
 - TID is mostly > 50 krads-Si
 - Biased/unbiased tests
 - Low and high dose rate tests (only Samsung showed significant improvement at low dose rates)
 - Most NVM cells have fairly good SEU tolerance and it's the surrounding circuits that have SEU sensitivity
 - SEL varies by manufacturer
 - » Current spikes noted during some heavy ion tests are being evaluated
 - SEFIs are a prime issue
 - Focus has been on Single Level Cell SLC
 - Multi Level Cell MLC has lower cell margins and data shows typically less radiation tolerance
 - Further scaled, MLC, and higher density to be evaluated in FY11

Alternate Material NVMs – Repeat from This Morning

- Alternate material NVMs evaluated as devices become available
 - Expect cell integrity to perform fairly well under irradiation on most NVMs
 - LaBel's Truism:
 - There are ALWAYS more challenges in "qualifying" a new technology device than expected
- Phase change memories (PCM)
 - Density, speed, and power look promising
 - Temperature is the challenge
 - Ex., Samsung, Numonyx initial data taken
- MRAM
 - Spin Torque appears to improve SWaP metrics
 - Ex., Avalanche Technologies
- Resistive Memories
 - Ex., Unity Semiconductor, HP Labs
 - Unity's talking about a 64Gb device by next summer!
- NVSRAMs
 - Ex. Cypress
- CNT

Numonyx PCM –

Combining Radiation and Reliability -NVMs

NASA

- FY09 began new studies on Flash memories combining TID with endurance
 - Result: TID did NOT degrade endurance properties at room temperature
- Considerations for FY11
 - Perform TID and lifetime/data retention tests
 - Must be carefully planned since high temperature typically used for accelerated life/retention tests has two inherent issues with Flash/NVM
 - Anneals radiation damage
 - May cause bit flips above commercial operating temperatures
 - Develop radiation qualification guideline document
 - Continue efforts on reliability latency, bit disturb, et al

New Flash Memory Tester

- TID, Reliability, and Combined Effects