Single-Event Effects in Silicon Carbide Power Devices

Jean-Marie Lauenstein, Megan C. Casey, and Kenneth A. LaBel
Code 561, NASA Goddard Space Flight Center

Stanley Ikpe
NASA Langley Research Center

Alyson D. Topper, Edward P. Wilcox, Hak Kim, and Anthony M. Phan
ASRC Space & Defense

To be published on nepp.nasa.gov
List of Acronyms

BJT – Bipolar Junction Transistor
BVdss – Drain-to-Source Breakdown Voltage
ESA – European Space Agency
ETW – Electronic Technology Workshop
FY – Fiscal Year
GE – General Electric
GRC – Glenn Research Center
GSFC – Goddard Space Flight Center
ID – Drain current
IG – Gate current
JAXA – Japan Aerospace Exploration Agency
JEDEC – (not an acronym)
JESD – JEDEC Standard
JFET – Junction Field Effect Transistor
JPL – Jet Propulsion Laboratory
JSC – Johnson Space Center
LaRC – Langley Research Center
LBNL – Lawrence Berkeley National Laboratory 88-Inch cyclotron
LET – Linear Energy Transfer
MOSFET – Metal Oxide Semiconductor Field Effect Transistor
NEPP – NASA Electronic Parts and Packaging program
RHA – Radiation Hardness Assurance
SEB – Single-Event Burnout
SEE – Single-Event Effect
SEGR – Single-Event Gate Rupture
SEP – Solar Electric Propulsion
TAMU – Texas A&M University
TID – Total Ionizing Dose
VDMOS – vertical, planar gate double-diffused power MOSFET
V_{DS} – Drain-source voltage
V_{GS} – Gate-source voltage
V_{R} – Reverse-bias Voltage
NEPP Program Goals & Collaborations

• Assess SiC power devices for space applications
 – Develop relationships with SiC device manufacturers
 – Investigate SEE susceptibility of currently available products
 – Understand SEE mechanisms to enable radiation hardening

• Work presented here has been sponsored in part by:
 – NASA Electronics, Parts, and Packaging Program (primary sponsor)
 – NASA Solar Electric Propulsion Program
 – NASA High-Temperature Boost Power Processing Unit Project

• SiC integrated circuits are also under study
 – This work is not presented here
Why SiC?

- High Breakdown Voltage (~ 10x vs. Si)
- Low On-State Resistance (~ 1/100 vs. Si)
- High Temperature Operation (200 °C)
- High Thermal Conductivity (~ 10x vs. Si)

Mass Savings
Power Savings
Cost Savings
NASA Interests in SiC

<table>
<thead>
<tr>
<th>Program/Project</th>
<th>Primary Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orion Spacecraft</td>
<td>Power</td>
</tr>
<tr>
<td>Advanced Space Power Systems</td>
<td>Mass</td>
</tr>
<tr>
<td>High-Temperature Boost Power Processing Unit</td>
<td>Extreme Environments</td>
</tr>
<tr>
<td>Venus Mobile Explorer (concept mission)</td>
<td>Extreme Environments</td>
</tr>
</tbody>
</table>

Images: NASA
A Closer Look at Mass Savings

- Solar Electric Propulsion mass savings by using 300 V solar arrays instead of 120 V arrays:
 - 2457 kg
- With derating, require 400 V power MOSFETs
 - Silicon radiation-hardened MOSFETs have power penalty
- Higher voltages will result in additional mass savings
 - SiC is a potentially enabling technology

Mass savings from: Mercer, AIAA 2011-7252

Fig: Rei-artur, Creative Commons
FY15 Partnerships

- As the awareness of SiC power device vulnerability to heavy-ion induced single-event effects has grown, so too has the momentum to find a solution:
Status of SiC Power Devices for Space Applications

- Testing by NASA has been performed on a wide range of SiC power devices rated 650 V to 3300 V

<table>
<thead>
<tr>
<th>Part Type</th>
<th>Number of Parts/Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power MOSFET</td>
<td>7/4</td>
</tr>
<tr>
<td>Diode</td>
<td>4/4</td>
</tr>
<tr>
<td>JFET</td>
<td>2/1</td>
</tr>
<tr>
<td>BJT</td>
<td>1/1</td>
</tr>
</tbody>
</table>

- Additional testing has been performed by ESA, JAXA, and other non-government parties

Serendipitously SEE-hard commercial SiC power devices are rare or non-existent
SEE Performance: Power Diodes

- As V_R increases, response to heavy ions goes from no effect to leakage current degradation to sudden catastrophic single-event burnout (SEB).

Modified from: Kuboyama, et al., IEEE TNS, 2006
SEE Performance: Power Diodes (cont’d)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Device</th>
<th>Max V_R</th>
<th>Min V_R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Degradation</td>
<td>Sudden SEB</td>
</tr>
<tr>
<td>1289 MeV Ag</td>
<td>D1$_{650V}$</td>
<td>150 (23%)</td>
<td>300 (46%)</td>
</tr>
<tr>
<td></td>
<td>D2$_{1200V}$</td>
<td>100-150 (8% - 13%)</td>
<td>500 (42%)</td>
</tr>
<tr>
<td></td>
<td>D3$_{1200V}$</td>
<td>--</td>
<td>500 (42%)</td>
</tr>
<tr>
<td></td>
<td>D4$_{1200V}$</td>
<td>350 (29%)</td>
<td>450-500 (38% - 42%)</td>
</tr>
<tr>
<td>1512 MeV Xe</td>
<td>D1$_{650V}$</td>
<td>150 (23%)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>D2$_{1200V}$</td>
<td>150 (13%)</td>
<td>--</td>
</tr>
<tr>
<td>1233 MeV Xe</td>
<td>D4$_{1200V}$</td>
<td>350 (29%)</td>
<td>450-475 (38% - 40%)</td>
</tr>
<tr>
<td>278 MeV Ne</td>
<td>D3$_{1200V}$</td>
<td>600 (50%)</td>
<td>600 (50%)</td>
</tr>
</tbody>
</table>

- Percentages are based on RATED breakdown voltage
- D1, D2, D3 = Schottky diodes; D4 = pn diode
Degradation Not Unique to SiC

- Recent work by Megan Casey/GSFC on silicon Schottky diodes reveals susceptibility of many diodes to heavy-ion induced degradation in addition to SEB.
Degradation Not Unique to SiC

- Recent work by Megan Casey/GSFC on silicon Schottky diodes reveals susceptibility of many diodes to heavy-ion induced degradation in addition to SEB
 - Degradation is small compared to SiC diodes

Si diode biased at 100%, SiC at 30%, of rated values
Flux for SiC = 1/10 of flux for Si
SEE Performance: Power MOSFETs

<table>
<thead>
<tr>
<th>Ion</th>
<th>Device</th>
<th>Max VDS No Damage</th>
<th>Degradation Currents During Run</th>
<th>Min VR Sudden SEB/SEGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1233 MeV Xe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1<sub>1200V</sub></td>
<td>40</td>
<td>(I_D \geq I_G)</td>
<td>600 < SEB < 700</td>
<td></td>
</tr>
<tr>
<td>M2<sub>1200V</sub></td>
<td>50</td>
<td>(I_D > I_G)</td>
<td>SEB > 500</td>
<td></td>
</tr>
<tr>
<td>M3<sub>3300V</sub></td>
<td>50</td>
<td>(I_D \gg I_G) at 350 V<sub>DS</sub></td>
<td>650 < SEB < 800</td>
<td></td>
</tr>
<tr>
<td>M4<sub>1200V</sub></td>
<td>Not found</td>
<td>(I_D > I_G)</td>
<td>SEB > 500</td>
<td></td>
</tr>
<tr>
<td>M5<sub>1200V</sub></td>
<td>40</td>
<td>(I_D > I_G)</td>
<td>400 (\leq) SEB < 600</td>
<td></td>
</tr>
<tr>
<td>M6<sub>1200V</sub></td>
<td>50 < V<sub>DS</sub> < 75</td>
<td>(I_D = I_G); (I_D > I_G) at 425 V<sub>DS</sub></td>
<td>475 < SEB < 500</td>
<td></td>
</tr>
<tr>
<td>1289 MeV Ag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4<sub>1200V</sub></td>
<td>25 < V<sub>DS</sub> < 50</td>
<td>--</td>
<td>100 < SEB < 600</td>
<td></td>
</tr>
<tr>
<td>M6<sub>1200V</sub></td>
<td>50 < V<sub>DS</sub> < 75</td>
<td>(I_D = I_G) at 225 V<sub>DS</sub>; (I_D > I_G) at 400 V<sub>DS</sub></td>
<td>500 < SEB < 600</td>
<td></td>
</tr>
<tr>
<td>659 MeV Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5<sub>1200V</sub></td>
<td>70</td>
<td>(I_D = I_G)</td>
<td>400 < SEB < 600</td>
<td></td>
</tr>
</tbody>
</table>

- All results shown here conducted at 0 V_{GS}
SiC Power Devices: Collaborative Studies In Progress

- Ongoing efforts to understand degradation and SEE failure mechanisms include:
 - Failure analysis work performed at NASA GRC on Schottky diodes
 - Modeling studies in progress at Vanderbilt University
 - Continued heavy-ion testing conducted by NASA GSFC & LaRC and ESA
- NASA Science and Technology Mission Directorate Early Stage Innovations NASA Research Announcement
- Potential NASA SBIR Phase II-X effort on process and design changes on SEE hardening of power SiC MOSFETs and diodes

Efforts reflect a coordinated commitment to enable SiC technology for space applications
Conclusions and Path Forward

- The NEPP Program has been an early and constant supporter of SiC power device radiation hardness assurance
- SiC devices show high TID tolerance, but low SEE tolerance
- Identification of a safe operating condition is extremely difficult
 - Degradation interferes with adequate sampling of the die with ions – many samples would be required
 - Degradation may impact part reliability
- Most space applications will require SiC power devices that have been hardened to SEE
- Interest in hardening SiC power devices is growing:
 - Manufacturers will require partnerships to help fund development efforts