Particle Test Fluence: What’s the Right Number?

Kenneth A. LaBel
ken.label@nasa.gov
Co-Manager, NASA Electronic Parts and Packaging (NEPP) Program

This work is supported by the NEPP Program
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>F</td>
<td>Fluence</td>
</tr>
<tr>
<td>Gbit</td>
<td>Gigabit</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>LET</td>
<td>linear energy transfer ((\text{MeV}\cdot\text{cm}^2/\text{mg}))</td>
</tr>
<tr>
<td>MeV</td>
<td>million electronvolts</td>
</tr>
<tr>
<td>NEPP</td>
<td>NASA Electronic Parts and Packaging</td>
</tr>
<tr>
<td>POF</td>
<td>Physics of Failure</td>
</tr>
<tr>
<td>SEE</td>
<td>Single Event Effect</td>
</tr>
<tr>
<td>SEFI</td>
<td>Single Event Functional Interrupt</td>
</tr>
<tr>
<td>SEL</td>
<td>Single-Event Latchup</td>
</tr>
<tr>
<td>SEU</td>
<td>Single Event Upset</td>
</tr>
<tr>
<td>SOC</td>
<td>Systems on a Chip</td>
</tr>
<tr>
<td>TNS</td>
<td>Transactions on Nuclear Science</td>
</tr>
</tbody>
</table>
Outline

• What’s fluence?
 – Brief history lesson

• The factors that influence fluence levels:
 – Mission environment and particle kinematics,
 – Number of samples being used in flight,
 – Number of transistors/nodes, and
 – Number of dynamic operating states.

• Considerations and implications

• Summary

http://journalofcosmology.com/images/StraumeFigure3a.jpg
What’s All This Fluence Stuff, Anyhow?

• Fluence is:
 – The number of particles impinging on the surface of a device during a single ion beam test run normalized to a square centimeter. Denoted F.

• It is NOT:
 – *Cumulative fluence*: the sum of all individual fluence levels for all beam runs (usually only for a given ion, energy, and angle).
 – *Effective fluence*: beam run fluence normalized by $\cos(\theta)$, where θ is the angle of incidence.
Motivation

- Assumption: dynamic operations
- Each transistor and operating-state has the same random probability of getting hit.
 - That's the challenge: single event effects (SEE) are random.*
 - In other words, the error signature will be a function of where a particle hits and when a particle hits in a dynamic operating system.
- Testing is an attempt to quantify this random process and provide:
 - Some reasonable coverage of the possible error signatures by getting sufficient particles to provide confidence in coverage of the transistor/state space.
- For a billion-transistor, complex, system on a chip (SOC) device, how do we ensure this?
 - This is the crux of this talk: doing enough testing to have a reasonable level of confidence.

*Okay, it’s really a Markov process – whether the occurrence of an SEU in the future and past are independent.
Tradition: When Do We Stop a Test at the Particle Beam?

- Existing test standards provide guidance on setting a “beam stop” at either a given fluence or specific number of events.
- Fluence is \((\text{number of particles})/\text{cm}^2\) for a given test run
- JESD57* (the long time guidance for heavy ion SEE) gives recommendations of:
 - A fluence of \(1 \times 10^7\) particles/cm\(^2\), or
 - 100 events, or
 - Significant event (such as SEFI or SEL).
- Proton testing is often stopped at a fluence of \(1 \times 10^{10}\) protons/cm\(^2\) (or 100 errors or a significant event).
- Are these numbers taking into account:
 - Physics of failure (POF),
 - Circuit operation, and
 - Sufficient statistics?

The Challenges

• There are four basic considerations for determining fluence levels:
 – Geometry:
 • The number of potentially sensitive nodes or transistors in the device (statistical node coverage).
 – Operation (and propagation):
 • The dynamic operation of the device under test (statistical state and error propagation coverage).
 – Sample size:
 • The number of samples of the device being used in the system (statistical system coverage).
 – POF and (more) statistics:
 • The environment exposure and particle kinematics (i.e., what happens when a particle striking the semiconductor).

• Note, for dynamic operations we are often looking not only at measuring a cross-section, but determining as many possible error signatures as reasonable.
 – A simple example is the range of transients induced in an amplifier.
Gee, I’m a Tree!

- This is the simplest of the challenges to discuss. So consider,
 - If a memory device under test (DUT) has a billion bits (Gbit), how many random particle strikes on the die surface are required to cover a sufficient number of potentially sensitive bits in order to obtain good statistics?
 - 1%?, 10%?, 50%?, 100%?
 - Ask yourself, what is the objective?
 - Mean distribution?
 - Corner cases?
 - Suggest 10% at a minimum, but…
 - Remember there’s timing involved (more to come next)…

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/imgnuc/crosec.gif
Dynamic Operation Constraints

- **State space issues:** Assume that a particle strikes a specific location (sensitive node). What can happen?
 - An error can occur immediately,
 - An error can occur at a undetermined time (and/or location) later, or
 - Nothing.
- **Why?** Let’s look at that Gbit memory.
 - How long might it take to cycle through the device memory space? Maybe a minute or so? Is it a simple form of propagation?
 - What if I’m writing over the memory space? Is it possible to clear errors by re-write and never detect them?
- **Take, for example** (courtesy Melanie Berg), a 32-bit counter.
 - There are 2^{64} states.
 - Operational frequency of 50 MHz (20 nsec per state) – over 300 billion seconds to cover all states.
 - Not happening during a beam run.
 - Key is understanding the error signature space and propagation effects… (ask Melanie about “Test Like You Fly” - not always best).
 - Remember, each state has the same random chance of taking a hit.
 - Consider a truly complex device like a system on a chip.
- **Operating state coverage (statistics), and error signatures.**
(Sample) Size Matters

• Besides the usual discussion of statistical relevance of samples from a single wafer lot, consider what the test results will be applied to.
 – How many samples in the flight application are being used?
 • There’s a big difference between flying two samples of a device and one thousand!
 • Outlier results are important when device is being used extensively. [1]

• It’s also important to grasp the idea of limiting cross-section (i.e., no events observed).

How important is knowing outliers in SEE testing?

Application Environment

• Rule #1: Ground irradiation is a confidence test and not a precise risk definition process.
 – The test is being performed to “bound” a problem. In other words,
 • Test fluence levels are not meant to be the same as what a device will be exposed to, but to provide confidence that the risk will be less than X of occurring.
 • Remember, X can be based on a limiting cross-section when no events have been observed
 – Though not likely true, assume that the next particle that hits the DUT causes an event, so that the limit of the cross-section is ~1/F.
 – It is important to remember that a test fluence of two to ten times a mission predicted fluence only goes so far in reducing risk.
 • Higher levels should be considered (keeping in mind total dose concerns at the DUT level) for better risk reduction.
 • If a mission proton fluence (of energies of interest) is 10^9, what does a test to 10^{10} buy?
More on POF

• Not all particles are created equal:
 – Some deposit energy “on a track” as per image below.
 – Some interact with materials and cause secondary particles to deposit the energy.
 • This is the traditional proton SEU concern (though direct ionization with low energy protons is a consideration for advanced technology nodes).
 • This is a lesser concern for heavy ions though it shouldn’t be ignored.

• So what’s this have to do with fluence levels?

http://www.cotsjournalonline.com/files/images/1896/cots1201_Mic_Fig2_large.jpg
Proton Physics

- Something on the order of 1 in 10^5 protons that hit a cm2 of a silicon DUT interacts to cause a secondary particle.

- These secondary particles have a distribution of linear energy transfer (LET – hey, how’d I get so far in this talk without mentioning LET?) as well as usually being of short range.
 - These are particle kinematic effects to consider when establishing a proton fluence:
 - Number of interactions,
 - Distribution of secondary ions, and
 - Risk coverage versus mission environment, sample size, etc…
 - Is 10^{12} protons/cm2 a realistic choice?

- Be wary of total dose or displacement damage at higher fluence levels: consider more samples of the DUT at lower fluence levels.
Visual Protons
(courtesy R. L. Ladbury and J.-M. Lauenstein, NASA/GSFC)

How good are protons at simulating heavy ions?

Silicon’s not the only culprit in creating problems.
And You Just Wanted a Number…

• Sorry folks, there’s no easy answer when you consider that:
 – F is a function of (geometry, operations, sample size, and POF).

• Suggestions:
 – Remember, it’s a bounded problem and reducing risk is the desired outcome.
 • Risk can’t fully be eliminated, but weeding out a reasonable coverage of error signatures and sensitivity levels is the goal.
 – Understand the dynamics of an accelerated beam test versus what you’ll be exposed to in space:
 • Drives data collection and how to apply it.
 – Melanie Berg’s “learning session” talk on Wednesday provides some thoughts on how you apply gathered data, but there are hidden gems that link with concerns noted here.
Acknowledgements

- Melanie Berg, ASRC Space & Defense
- Jean-Marie Lauenstein and Ray Ladbury, NASA/GSFC