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Reliability statisticians are interested in:
• Tracking system level failure data during 

the service life for logistical purposes.
• Determining the hazard rate curves.
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PoF reliability engineers are interested in:
• Understanding the individual failures.
• Controlling the causes.

This is done by:
1. Assessment of influence of hardware 

configuration.
2. Systematic and detailed study of life-cycle 

stresses on root-cause failure mechanisms.
3. Influence of materials at potential failure 
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Reliability – a PoF Perspective
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Failure……………… product no longer performs the intended function

PoF  Fundamentals: Terminology 

Failure Mode………… the effect by which a failure is observed

Failure Site…………… location of the failure site

Failure Mechanism….. physical, chemical, thermodynamic or other process 
that results in failure

Fault/Defect……………. weakness (e.g., crack or void) that can locally 
accelerate damage accumulation and failure

Load…………………… application/environmental condition (electrical, 
thermal, mechanical, chemical...) that can precipitate 
a failure mechanism

Stress…………………... intensity of the applied load at a failure site
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Failure Mechanisms in Printed Wiring Assemblies
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Virtual Qualification: A Method to Apply PoF in 
Electronic Design

• VQ is a simulation-based methodology that assesses whether a 
system can meet defined life cycle requirements based on its 
materials, geometry, and operating characteristics.

• Virtual qualification is based on physics-of-failure (PoF) principles 
and focuses on the dominant wear-out mechanisms in electronic 
products
– Focus on interconnect materials such as solder joints.
– Printed circuit board features such as plated through-holes (PTH).
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Virtual Qualification Software

Design Capture
Interface to CAD

Assessment Management

Stress Assessment

Life Cycle
Characterization

Life Expectancy and
Failure Assessment
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Components
• 50 microcircuits
• 7 connectors
• 22 inductors
• 44 semiconductors
• 241 capacitors
• 222 resistors

RT 1556 Control Module
• Consists of 3 CCA’s with 6 layer PWB’s
• Ceramic and plastic microcircuits
• SMT and PTH technology
• Commercial and military components
• Approx. Cost $5k/module

Aluminum Backplane

Board 1

Board 2

Board 3

Frame

Aluminum
Backplane

CCAs
Approximately 
4.5x4.5”
40 mils thick 
laminated BT
backed with  25 
mil Al Plate

Case Study: Virtual Qualification of Radio 
Control Module
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Life Expectancy: 20 years

• Power-On Time = 10,080 hours
30 flight hours per month, ratio on time vs flight time 
= 1.4

• Thermal Cycles = 7,200 cycles
one cycle per flight hour, 30 flights per month

• Vibration Cycles = 3.6x106 to 70.8x106 cycles
Maximum PSD 0.04G2/Hz 
100-1000 Hz (Absolute worst case, 10% of flight 
hours ~ 109 cycles)

Life Cycle Loading Conditions
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Thermal simulation of the circuit card was performed to obtain 
operating temperatures and temperature gradients between board 
and components.

Component Data
• Component interconnect geometry 

and material
• Component standoff height
• Thermal vias
• Thermal paste

Board Data
• Material composition of board 

layers
• Thermal conductivity of board 

materialBoundary Conditions

Thermal Analysis
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Layer 1 Temperature Component Temperature – Case Temperature

Board and component temperatures are used to confirm that parts will operate below 
temperature limit and in developing a life cycle loading scenario.  Simulation indicated an 
8°C rise above ambient during operation which was confirmed in test.

Thermal Analysis – Results
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Vibration simulation of the circuit card was performed to obtain the 
natural frequency and board response to the anticipated loading 
condition. 

Vibration Analysis – Problem Definition
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• Natural Frequency > 500 Hz
• Maximum curvature at board center

Vibration Analysis – Results
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The failure 
assessment of the 
life cycling 
loading scenario 
and database 
indicates that the 
module will not 
meet its 20 year 
design 
requirement.  The 
life is equivalent to 
3800 thermal 
cycles.

Failure Assessment For Life Cycle Loading
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Test conditions:
Temperature cycling:  -50 to 95°C, dwell, 2 hours per cycle
Vibration:  0.04 G2/Hz, 6.10 Grms, 10 hours

Simulation Results

Test would require 
approximately 63 
days or 750 
thermal cycles.

Using the simulation model, a physical test was developed to 
precipitate failures. 

Virtual Testing
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• Changed design to remove the 20 pin LCC
• Improved reliability of modules - 5,000 units fielded - 20 years field life
• Avoided potential cost of $27M in operation and sustainment.

Virtual Qualification Results:
• Identified 20 pin Leadless 

Chip Carrier (LCC) as a weak 
link in the CCA design

• Estimated time-to-failure 
during accelerated life test 
cycle

• Estimated life under operating 
conditions - 6.5 years

Summary of Radio Module VQ

17



S AF E T Y  a n d  M I S S I O N  AS S U R AN C E  D I R E C T O R AT E  C o d e  3 0 0
To be published on nepp.nasa.gov originally presented at the 2016 NEPP Electronics Technology Workshop (ETW), Goddard Space Flight Center, Greenbelt, Maryland, June 13–16, 2016.

Case Study: SpaceCube Processor Card 

• Identified candidate PCBA

• Life cycle stress profiles
• Computer model of the PCBA
• PCB inspection data, design inputs -

corresponding “safe” characteristics
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Overview of the SpaceCube Processor Card

Populated Board
Expected stress 
conditions:
• -7°C to 48°C
• Limits set at -30°C to 

+55°C
• 14.1 GRMS

BOM:
• CGA package 1752 pin, 1mm pitch, 20mil 

diameter, 90/10 solder with eutectic
• MLCCs, SMD resistors, diodes, connectors, 

actives and power MOSFETs
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The difference in the “z” coefficient of thermal expansion (CTE) of the copper
plating and the resin system in the PWBs is usually greater than a factor of 10.
Higher reflow temperature will induce greater damage on large aspect ratio PTHs.

Printed Wiring Board Failure Mechanism Plated 
Through Hole Circumferential Cracking
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Thermal excursions 
cause thermal 
expansion mismatch in 
the thickness direction

PWB-CTE in thickness 
(z) direction: ~50-90 
E-6 /oC and Cu-CTE in 
plating: ~20 E-6 /oC 

PTH Low-Cycle Fatigue in PWBs
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Feature Variant Effect on PTH Stress Reason

Location Spacing between PTHs More closely spaced PTHs associated with a 
reduction in stresses

Out of plane constraints 
reduced and more readily 
shared between adjacent 
PTHs.

Barrel Stress variation with respect to 
midplane

Stress increases closer to mid plane; 
maximum barrel stress at mid plane.

Results of thermally 
induced stress analysis.

Innerplanes Polyamide boards • Local stress concentration at innerplane
(could exceed midplane stress 
depending on location wrt midplane)

• Overall reduction (10%) in barrel stress 
outside concentrations (vs no 
innerplanes)

In plane CTE between Cu 
and Polyamide have a 
larger delta than FR-4 
and Cu

Aspect Ratio MLB Thickness/Hole Diameter High aspect ratio associated with high 
stresses.

0.030” boards are most 
robust according to IPC 
TR-579; 0.090” boards 
are less robust all other 
dimensions  being equal.

Plating Thickness 2 mils variation  (1-3 mils thickness) can 
change stress levels by 25%

More metal, less stress

Solder Filling PTHs Solder Filled Reduction in overall barrel stress 3%-9% More metal (solder); 
small effect due to 
properties of solder
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Summary

• Multifaceted PoF tools are being used in the SmartCube development process:
– Adoption of PoF approaches allows the team to understand the product 

degradation processes and account for degradation during the design.

• Simulation based failure assessment is ongoing, stresses include
– thermal analysis
– vibration analysis 
– virtual failure assessment 

• Algorithms are based on PoF knowledge assembled through the review of 
published literature and on the basis of research conducted at the University of 
Maryland. 
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