

1

Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

David (Donhang) Liu ASRC Space and Defense Work performed for the Parts, Packaging, and Assembly Technology Office, NASA GSFC, Code 562 NASA Goddard Space Flight Center Greenbelt, MD 20771

Acronyms

Outline

3

- Summary of NEPP-Funded Deliverables
- Development of a General Reliability Model for BME Capacitors
	- How to build BME capacitors for high-reliability applications
	- How to screen out bad apples
	- How to explain the reliability life difference in commercial automotive-grade BME capacitors
- Summary and Future Work

NEPP-Funded Deliverables for Fiscal Year 2014

- A general reliability model was developed for BME capacitors
- The results were presented at the 2014 International Capacitor and Resistor Technology Symposium (CARTS) and uploaded to the NASA NEPP website
	- \triangleright D. Liu, "A General Reliability Model for Ni-BaTiO₃-Based MLCCs." CARTS Proceedings, Santa Clara, CA pp. 31-47 (2014) (https://nepp.nasa.gov/files/25994/2014-562-Liu-Final-web-CARTS2014 paper-TiO3BME-TN14691.pdf)
	- D. Liu, "Evaluation of Commercial Automotive-Grade BME Capacitors." CARTS Proceedings, Santa Clara, CA pp. 189-203 (2014) (https://nepp.nasa.gov/files/25998/2014-562-Liu-Final-web-CARTS2014 paper-Auto-TN14693.pdf)
- A technical paper won the "Outstanding Paper Award" at CARTS 2014
	- \triangleright This is the 3rd time in the last four years that this award has been presented to David Liu and his co-author(s)
- A journal paper was accepted for publication in an IEEE Transaction

NEPP-Funded Deliverables for Fiscal Year 2014 (Cont'd)

5

- Application of NEPP-funded study results to the space/military community's general interest in BME capacitors
	- Continuing participation in the G11 BME Industrial Forum to establish a new MIL performance specification for multilayer ceramic capacitors with thin dielectric layers (to replace the currently used MIL-PRF-123)
	- \triangleright Selection as one of the seven representatives for a small-scale weekly meeting (NASA GSFC, The Aerospace Corporation, Raytheon, Defense Logistics Agency, AVX, KEMET, Presidio)
- Implementation of a reliability model for NASA documentation for the pre-qualification of BME capacitors
	- Construction analysis (CA) and destructive physical analysis (DPA) requirements in specification control drawings (SCDs) for Virtex-5 at Marshall SFC
	- ▶ Pre-qualification requirements in SCD of GSFC S-311-P-838 for BME capacitors with thin dielectrics (*non-NEPP-funded*)
	- A new section in EEE-INST-003 (*non-NEPP-funded*)

Development of a General Reliability Model for BME Capacitors

 $R(t) = R(t = 0) \times \{(1 - \theta) \times P(t) + (\theta) \times Q(t)\}\$

$$
R(t=0) = \left[1 - \left(\frac{\overline{r}}{d}\right)^{\alpha}\right]^{N}
$$

Initial reliability

$$
P(t) = e^{-\left[\frac{t}{\sqrt{\frac{c}{Vapplied}n} \times (\frac{d}{\overline{r}})^n \cdot e^{\left(\frac{E_{a1}}{kT}\right)}}\right]^{\beta_1}}
$$

$$
Q(t) = e^{-\left[\frac{K_0t}{Ce^{-bE} \cdot e^{\left(\frac{E_k}{kT}\right)}}\right]^{\beta_2}}
$$

Where:

-
- \bar{r} : average grain size

N: number of dielectric layers *n:* power law constant

^α: empirical constant *C, c, and b:* constants

Reliability for catastrophic failures (modified P-V equation)

Reliability for slow degradation (for BME only) (E-model)

d: dielectric thickness *E:* applied electric field $\overline{\kappa}$ *r* degradation rate constant of V_o

θ, β*1, and Ea1:* percentage, Weibull slope constant, and activation energy for failure mode 1: catastrophic failure

Application Example: Initial Reliability

7

When *t=0*, one has

 $R(t = 0) = \left[1 - \left(\frac{\bar{r}}{d}\right)^{\alpha}\right]^N$

- The initial reliability is only determined by the construction/processing parameters
- Two key parameters for reliability control: average grain size and number of total dielectric layers
- This helps prevent the counterfeiting of commercial BME capacitors for high-reliability applications

Application Example: Initial Reliability (Cont'd) **Life Test Results per MIL-PRF-55681 and -123**

$$
R(t=0) = \left[1 - \left(\frac{\overline{r}}{d}\right)^{\alpha}\right]^N = 1.00000
$$

- Some commercial BMEs passed the life test. Life testing of another 8 groups of BME capacitors is still in progress!
- All automotive-grade BME MLCCs meet this requirement
- The formula described can be used as a simple rule of thumb when designing BME MLCCs for high-reliability applications
- This also indicates that highreliability MLCCs must be built for this purpose; one cannot improve capacitor reliability by "up-screening"

Selection Criterion and Number of Zeros

9

$$
R(t=0) = \left[1 - \left(\frac{\overline{r}}{d}\right)^{\alpha}\right]^{N} = 1.00000
$$

The number of zeros represents the failure rate level!

- BME capacitors that meet this requirement may not all pass the reliability life testing per MIL-PRF-55681 or MIL-PRF-123
- BME capacitors that did not meet this requirement would have a high chance of failure during life testing!
- An empirical criterion of construction analysis can be used to reject a BME capacitor for high-reliability use prior to tedious life testing

Reliability Life in Automotive-Grade BME Capacitors

- BME MLCCs made with the same chip size, capacitance, and rated voltage, and that are qualified to the same reliability level (AEC-Q200), were processed for construction analysis to reveal the number of dielectric layers, average grain size, and dielectric thickness
- These BME capacitors were then degraded at similar levels of external stresses as characterized by electric field (kV/mm) and volts/grain

MTTF and Leakage Current of BME MLCCs

Mean Time to Failure (MTTF in Minutes) of BME Capacitors

- Both time to failure (TTF) and leakage current of each capacitor device were recorded
- Reliability life, as characterized by MTTF, was more than one magnitude in difference among the three capacitor lots
- The leakage current patterns also reveal very different characteristics

$MTTF = \eta \Gamma(1 + \beta^{-1})$

Leakage Current vs. Stress Time Characteristics

- MTTF is highly dependent on failure mode. Two failure modes have been identified:
	- Catastrophic: a time-accelerating increase in leakage current that is mainly due to existing processing defects or to extrinsic defects
	- Slow degradation: a near-linear increase in leakage current against stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects)
- All AC47450 units failed at very low leakage current levels, and all failed with a catastrophic failure mode
- Most of the AA47450 units failed with slow degradation
- AB47450 units revealed a mixed failure mode between those of AC47450 and AA47450
- For a certain period of time, leakage current vs. stress time showed an exponential characteristic

Assumption I: Existence of Depletion Layers in BME MLCCs

IOP Conf. Series: Materials Science and Engineering 18 (2011) 092007

- The microstructure of each ceramic grain is inhomogeneous. Significant resistivity differences often have been reported due to the inhomogeneity between a grain boundary and the interior of a grain.
- The existence of double Schottky barrier layers has been proposed to describe this inhomogeneity.

The resistivity of BME MLCCs:

Barrier height: $\phi =$

 $\boldsymbol{\phi}$

 \boldsymbol{k} T

Assumption II: Oxygen Vacancy Entrapment

- When a migrating oxygen vacancy is approaching a grain boundary, it has two options: cross over it, or be trapped/localized
- Computational analysis shows that trapping of oxygen vacancies at grain boundaries is energetically favorable (Oyama, et al., 2010)
- When it is trapped, two electrons must be captured to meet the electrical neutrality condition:

$$
V_O^{\bullet\bullet} + 2e' = V_O
$$

• Two electrons will be compensated by the space charges:

 $Ti^{4+} + e' \rightarrow Ti^{3+}$

and/or

 $Ti^{3+} + e' \rightarrow Ti^{2+}$

- This will reduce the barrier height and lower the Fermi level as well as $n_s(t)$
- This presentation only discusses entrapment at grain boundaries

G.Y. Yang, E.C. Dickey, C.A. Randall, (2004)

Calculated IR Degradation in BME MLCCs

- The calculated IR degradation based on the entrapment of oxygen vacancies at depletion layers at grain boundaries matches well with the measured leakage current time dependence
- The activation energy and reaction constants from the model reveal meaningful results

$$
\boldsymbol{\phi}(t) = \boldsymbol{\phi}(0) \cdot e^{-2Kt} = \boldsymbol{\phi}(0) \cdot e^{-\frac{2t}{MTTF}}
$$

$$
I(t) = I_0 exp\left(-\frac{\phi(t)}{kT}\right)_{15}
$$

Summary and Future Work

- A general reliability model for BME capacitors was developed
- The model can be used as a guideline for designing BME MLCCs for high-reliability applications
- The model can also be used as a screening criterion to reject BME capacitors
- The results of this NEPP-funded study have been implemented in a number of NASA documents
- The effort has also been extended to the G11 BME Industrial Forum to establish a new MIL performance specification for multilayer ceramic capacitors
- The model has been used to explain the reliability life difference in automotive-grade BME capacitors
- The model needs to be extended for hazard rate evaluation
- Continuous life testing of BME capacitors is needed to validate the proposed model