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 

Abstract— New approaches to statistical modeling in 

radiation hardness assurance are discussed.  These 

approaches yield quantitative bounds on flight-part 

radiation performance even in the absence of 

conventional data sources.  This allows the analyst to 

bound radiation risk at all stages and for all decisions in 

the RHA process.  It also allows optimization of RHA 

procedures for the project’s risk tolerance. 

 

Index Terms—probabilistic risk assessment, radiation 

effects, reliability estimation, quality assurance, 

radiation hardness assurance methodology 

I. INTRODUCTION 

Because radiation testing is destructive, statistical 

models are needed to bound flight part performance 

using test data for a sample representative of flight parts.  

Such models can bound failure/error rates, degradation 

or performance anomalies, all of which are needed for 

reliability estimates, part selection, design and other 

Radiation Hardness Assurance (RHA) activities.   

Historically, RHA statistical models could use only 

the most representative data.  For Total Ionizing Dose 

(TID) and Displacement Damage Dose degradation, this 

meant data for the flight wafer diffusion lot.  For Single-

Event Effects (SEE), this usually meant data for a 

sample made with the same mask set and fabrication 

process as flight parts (not necessarily the same lot}.  

Other types of data, such as TID historical data (same 

part type) or data for similar part types manufactured in 

the same process (so-called similarity data, used for SEE 

or TID) served as qualitative guides for flight part 

performance.  One reason for this is that disentangling 

the contributions of part-to-part, lot-to-lot and part-type-

to-part-type variability when using historical and 

similarity data requires a complicated statistical model.   
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Here we discuss several statistical techniques and 

models that have proven useful in RHA efforts.  The 

methods fall into two categories.  We call methods using 

only the most representative data conventional methods.  

Although the statistics for such conventional models are 

well understood, we have developed techniques that 

elucidate the sensitivities of RHA results to errors in the 

data or model.  For SEE, we discuss techniques for 

fitting test data and bounding SEE rates.    For TID, we 

consider how to identify “problem parts,” where part 

radiation response does not follow a well behaved 

distribution.  These techniques facilitate test planning 

and execution and allow the analyst to verify that the 

data conform to the assumed statistical model.  Although 

a survey of past and current approaches to TID and SEE 

RHA is beyond the scope of this work, such reviews 

exist in the literature.[4,5] 

Unfortunately, there are some things conventional 

methods cannot do.  They can only bound flight part 

performance (e.g. for use in design and part selection) 

once lot-specific TID or part specific SEE test data 

become available.  They do not provide a context for 

interpreting whether a test result is expected or not.  To 

address these issues, we are developing Bayesian 

approaches to RHA, which can use many types of data 

in a single coherent framework to bound radiation 

performance of candidate parts at all stages of the design 

process.  We consider flight-lot data, historical data, 

similarity data, and heritage data—all of which can also 

provide a context for interpreting test results as they are 

realized.  The techniques can be generalized to other 

types of data as well.   

Using larger datasets poses challenges.  For example, 

data may be harvested from multiple sources, some 

perhaps less controlled than ideal.  Flexible statistics 

must be developed that apply for all the data and still 

bound flight-part radiation performance.  A flexible 

statistic allows incorporation of more data—which is 

important, since RHA often relies on small samples and 

sparse data.  It is also important to understand the 

question(s) the data are answering.  For instance, even 

flight lot test data can give only a conditional answer as 

Statistical Modeling for Radiation 

Hardness Assurance: Toward Bigger Data 

R. Ladbury and M. J. Campola 

mailto:Raymond.L.Ladbury@nasa.gov
mailto:Micael.J.Campola@nasa.gov


 

To be published in the Institute of Electrical and Electronics Engineers (IEEE) Transactions on Nuclear Science,  

Special Edition, 2015.  2 

to how the flight parts will perform:  Applying one-sided 

tolerance limits to find the 99% worst-case (WC) 

radiation performance (RP) of a part from our flight lot 

with 90% confidence (RP(99/90)), really says:  If the 

test sample used is in family with at least 90% of 

possible similar samples (the confidence level—CL—in 

our data), and as long as the flight parts perform at least 

as well as 99% of parts (the probability of success, Ps) 

from the resulting distribution fit to our data sample, the 

RP of the flight parts should not be worse than 

RP(99/90).  We will briefly summarize what sorts of 

questions can be answered with historical, similarity, 

heritage and other data. 

Lastly, we look at statistical techniques that can tell us 

when data deviates from statistical model assumptions 

in ways that invalidate the analysis and consider how to 

present results for clarity and relevance.   

II. CONVENTIONAL SEE HARDNESS ASSURANCE 

In conventional RHA, variation in part-to-part and lot-

to-lot SEE response is usually treated as negligible—

either because the test data are for the flight lot, or 

because process variations are assumed to have a limited 

effect on the SEE rate.   The dominant errors in the SEE 

cross section () vs. Linear Energy Transfer (LET) 

curve are Poisson fluctuations in event counts for each 

LET, or equivalently, fluctuations in failure fluence for 

destructive SEE.  (Ref. [1] treats the case where fluence 

errors at each LET are also significant.)  The  vs. LET 

curve is the device input to the rate estimation tools.  

Usually, this input involves fitting the  vs. LET data to 

a family of curves—e.g. cumulative Weibull or 

Lognormal forms—and the fit parameters serve as 

inputs to the rate estimation tool. 

The usual guidance for dealing with Poisson errors on 

cross-section measurements is to accumulate sufficiently 

large event counts that the errors are negligible.[2,3]  

Then one can fit the cross-section data without reference 

to the errors.  Unfortunately, many common fitting 

techniques (e.g. ordinary least squares, or OLS) do a 

poor job of fitting  vs. LET, especially near onset, 

because  varies by several orders of magnitude and the 

data points near saturation dominate most goodness of 

fit (GOF) metrics.  This has led to many strategies for 

fitting SEE data, ranging from “by eye” to weighted 

OLS.  Empirically, we have found that the metric in (1), 

which we refer to as least log squares (LLS) does a 

better job of finding correct onset LETs (see Fig. 1) than 

OLS, and it also does well finding the other parameters: 
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In (1), {i
obs} is the set of observed cross sections—

one for each of k LET values—and {i
exp} are the 

expected cross section from our model—e.g. a Weibull 

form.  LLS is related to the G statistic and the Kullback-

Liebler divergence between two distributions.[6]   
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Fig. 1 The LLS goodness of fit metric outperforms OLS for determining fit 

parameters that depend on the near threshold behavior of the fit function—as 

shown here for onset LET for a Weibull fit to Monte Carlo generated data. 

Unfortunately, large event counts are not always 

possible.  Destructive SEE data may require one part per 

event, making large counts impractical.  Some SEE 

modes may be so disruptive or rare that they would 

require very long test campaigns.  In some cases, TID 

degradation or latent damage may preclude gathering 

large statistics.  Then Poisson errors cannot be ignored.    

Reference [7] presented a flexible method for treating 

Poisson errors in SEE  vs. LET fits using generalized 

linear models (GLM).  In a GLM, variability of a 

statistic x (e.g. event counts) about its mean  is 

described by a member of the exponential family of 

distributions P(x,) (e.g. the Poisson distribution).  The 

mean  is described by the model to be fit to the data.  

The best-fit model parameters, p1,p2...pk are then 

determined by maximizing the likelihood, L  

))p...p,p(,x(P k

n

1i

21i


L                          (2) 

as a function of the model parameters, for example, 

lim—the limiting cross section, LET0—the onset LET, 

and Weibull parameters width W and shape s.   

Because L decreases normally moving away from 

best-fit values, we establish confidence intervals for 

parameters using the inverse 2 distribution with degrees 

of freedom equal to the number of model parameters: 
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Max LL (3) 

where LMax is the maximum likelihood and L(CL) is the 

value of L that defines the CL in the parameter space.   

Using (3), one can determine the most likely rate as well 

as the worst-case SEE rate consistent with all possible 

fits to the data for a desired confidence.  References [7] 

and [8] illustrated use of the method for test planning.  

A good metric for assessing a data set’s statistical errors 

is the ratio of the 90%WC SEE rate to the best-fit rate.  

Usually, the strategy that reduces this ratio the most 

leads to the best dataset for hardness assurance.  Fig. 2 

illustrates this process using single-event latchup (SEL) 

data for the Linear Technology Corp. (LTC) LTC1419 

Analog-to-Digital Converter (ADC). The figure shows 

SEL  vs. LET data with error bars and the best and 

90% worst-case fits to the data determined via the GLM 

technique outlined above.  The table below the figure 

shows the ratio of the rates resulting from the 90% WC 

fit to the best fit if we add no data (column labeled 

Current), if we add data at low LET on the low LET 

cross section and better determine LET0, at high LET to 

better determine lim or both low LET and high LET.  

(Note: for this analysis, we have not assumed any new 

ions or angles were used, but instead added data to 

existing cross section estimates to reduce error bars.) 

Faster computer speeds have made it practical to use 

this method in real time for test decisions on the fly 

during a test run (e.g. whether to test at high LET to 

better establish lim or low LET to establish LET0).  We 

have implemented the GLM as a spreadsheet that can 

run in Microsoft Excel on a laptop computer. 

III. DESTRUCTIVE SEE 

Destructive SEE (DSEE) merit special consideration.  

Because of their severe consequences and the difficulty 

of estimating accurate failure rates for destructive SEE, 

the most common risk mitigation approach for these 

modes has been risk avoidance.  This has meant 

rejecting susceptible parts (e.g. for SEL) or using them 

only under conditions where susceptibility is negligible 

(e.g. within the safe operating area for single-event gate 

rupture—SEGR—or single-event burnout—SEB—for 

power MOSFETs).  Unfortunately, this is not possible in 

all applications.  Some components afford performance 

advantages that must be weighed against SEE-induced 

failure risks.  Sometimes—e.g. for legacy hardware—a 

component’s susceptibility may come to light after it is 

designed into the hardware.  Required deratings may 

compromise performance unacceptably.  These factors 

have increased interest in reliable destructive SEE rate 

estimation.[9-13]  Such methods usually require 

estimation of at least the lim for failure or of  vs. LET. 

 
Fig. 2 Because the onset LET for SEL in the LTC1419 ADC is between 55 

and 59 MeVcm2/mg, the SEL vs. LET curve has only 3 data points. The 

figure shows  the best and 90% WC fits to the data, while the table shows the 

ratio of the 90% WC to the best-fit SEL rates for the current data set and for 

simulated data with added cross section measurements near threshold to 

better determine LET0, at high LET to better define saturation, and both. 

 

DSEE rate estimation usually suffers from limited 

statistics.  Moreover, for truly destructive SEE, every 

event represents a failed part, raising the question of 

how to disentangle part-to-part susceptibility variation 

from Poisson fluctuations in failure fluence.  Even if 

failure can be avoided and statistics gathered for each 

part, there is still the question of whether stresses from 

the destructive SEE mode cause latent damage to the 

component and alter its susceptibility.  Whether we 

construct the DSEE cross sections with one or many 

parts, treating each event individually allows us to 

discover deviations from the assumed model (constant 

failure rate).  In this case, the number of events is 

always 1, and the variable is the failure fluence.  

Because SEE are Poisson, failure fluence will be 

distributed exponentially about the mean failure fluence, 

F=1/.  For each LET, we can accumulate statistics 

(with a single device if possible or multiple devices if 

failures occur), and we can fit  vs. LET using a more 

complicated GLM: 

    (4) 

The product over j is over LET, with (LETj)=1/Fj, 

the inverse of the mean failure fluence at LETj, and the 

product over i represents statistics accumulated at LETj 
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(Fij is the failure fluence for the ith run at LETj).  The 

model being parameterized enters into the GLM through 

(LETi)=1/F(LETi).  For example, for the usual 

Weibull form for (LET), we would determine the 

LET0, lim and Weibull parameters that maximize L. 

The failure fluences {Fij} for LETj should be 

distributed exponentially about the mean Fj. We can 

test whether this is true in a number of ways. Because 

the Weibull distribution reduces to an exponential 

distribution when its shape parameter is 1, one can fit 

{Fij} to a Weibull and determine the best-fit value for 

the shape parameter s.  (Note: Do not confuse the 

Weibull distribution fit to test exponentiality of {Fij} 

with the Weibull cross section form.  The latter involves 

multiple LET values, while the former uses only one.  

They will yield different best fit parameters.)  If s>1 

gives a significantly better fit than s=1, it may indicate 

the failure rate rises with increasing fluence (evidence 

for latent damage, TID effects or multiple-particle 

effects).  If s<1 yields a better fit, it may indicate a 

significant component of early failures and high part-to-

part variability.  Figs. 3a and 3b show fluence to failure 

for 15 samples of two 100 V power MOSFETs.[13] 

     While the ST-Micro HG0K failure fluences trend 

exponentially, the Fujitsu 2SK4219 seems to have 

excess early failures. Are the excesses significant?  

Weibull fits reveal that the best-fit shape parameter is 1 

for the 2SK4219 and 1.1 for the HG0K.  Also, the ratio 

of the standard deviation to the mean is 1.05 for the 

2SK4219 and 0.92 for the HG0K—both near 1 as 

expected for exponentiality.  Neither part deviates 

significantly from exponential behavior, so the failures 

can be treated as Poisson. 

     Often when VGS=0, a MOSFET will not fail during 

irradiation, but will fail during the post-irradiation gate 

stress (PIGS) test.[14]  Under these conditions, the 

failure fluence cannot be measured.  However, if the test 

fluence is sufficiently low, then only some of the parts 

will fail the PIGS test.  We can use that proportion, and 

assuming binomial statistics, estimate a confidence 

interval for the mean failure fluence.  Reference [13] 

found that when irradiated with VGS=0 V and 

VDS=100 V, 16 of 22 2SK4219 MOSFETs failed after 

exposure to 1000 395-MeV Xe ions/cm2.  Similarly 11 

of 21 HG0K MOSFETs irradiated with VGS=0 V and 

VDS=100 V failed after irradiation with 10000 305-

MeV Kr ions/cm2.  Table I gives the best estimates and 

90% confidence intervals (CI) for the mean failure 

fluence for the 2SK4219 and HG0K MOSFETs when 

VGS=0.  The resulting fluences can then be inserted into 

equation 4 to determine the best fit for  vs. LET. 

IV. CONVENTIONAL TID MODELS 

Whereas SEE hardness assurance usually ignores part-

to-part and lot-to-lot variability, they form the heart of 

statistical models for TID RHA.  This is reflected in the 

fact that TID RHA statistical models have been 

standardized for decades in MIL-HDBK 814.[15] 
 

TABLE I: ESTIMATED SEGR FAILURE FLUENCE WHEN VGS=0 

Part # Best Mean (cm-2) 90% CI for Mean (cm-2) 

2SK4219 640 500-1150 

HG0K 13500 8000-21500 
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Fig. 3 Fluence to failure and best-fit exponential trend for a) Fuji2SK4219 

and b) ST Micro HG0K 100 V power MOSFETs irradiated with VDS=100 V 

and VGS=-10 V.  Data courtesy of Veronique Ferlet-Cavrois.[13] 

 

This handbook summarizes over a decade’s research 

into TID RHA methodology, including distribution-free 

and distribution-dependent sampling, radiation response 

variability (part-to-part and lot-to-lot), the role of 

overtest, the role of historical data and many other 

critical issues.  Making no assumptions as to how 

radiation response varies from part-to-part, large sample 

sizes would be required to ensure reasonable confidence 

and probability of success (e.g. 230 samples with no 

failures to ensure 99% success probability with 90% 

a) 

b) 
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confidence).  Thus, in practice, most commonly used 

TID statistical models are predicated on the assumption 

that radiation response of devices from a single wafer 

diffusion lot of a part type will follow a well behaved, 

unimodal distribution. Although this establishes 

reasonable success probability Ps and confidence level 

(CL) with small test samples and works well for most 

commonly used parts, it introduces possible systematic 

error if the assumptions about the distribution are 

violated.  Moreover, a small sample test is unlikely to 

discover such violations or reveal details about the 

extremes of the radiation response distribution.  MIL-

HDBK 814 suggests using historical data for the part to 

illuminate such issues.  Figs. 4 and 5 show that such a 

strategy can effectively identify distribution pathologies.   
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Fig. 4 Small sample sizes preclude identifying the bimodal structure of 

radiation response in Analog Devices, Inc (ADI) OP484 op amp using a 

single lot.  However, when lots are combined, the bimodal response becomes 

apparent, with suggestions that bimodality can occur even within a single 

wafer lot (lot 2).   
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Fig. 5 Increased gate-to-source leakage current for New England 

Semiconductor (NES) 2N5019 JFETs exhibits extreme variability, spanning 3 

orders of magnitude.  Moreover, the lack of an obvious breakpoint suggests a 

thick-tailed behavior or presence of outliers rather than bimodality.  

 

However, it does not quantitatively treat these features, 

which may be difficult if they are not obvious.  Next, we 

discuss Bayesian approaches using historical and 

similarity data and quantitative methods for assessing 

distribution pathologies (e.g. bimodality and thick tails).   

V. DATA STRUCTURE AND BOUNDING RHA 

The key to understanding our use of unconventional data 

types is seen in fig. 6.  Even as datasets become less 

representative, they contain the more representative 

datasets as subsets.  Thus, when we use less 

representative data to bound flight part performance, 

what we are really doing is saying that as long as flight 

parts are not out of family (that is, worse than e.g. 99% 

of parts in the lot/historical database/process), they 

should perform no worse than the 99% worst-case parts 

in that class.  The resulting bound is likely conservative, 

and if it is too loose to ensure mission success, more 

data or testing are needed.  As mentioned above, flight-

lot, historical and similarity data are really answering 

different questions.  With flight-lot data, we can ask, 

e.g., how poorly the flight part can perform if it is no 

worse than 99% of the parts from our flight-lot 

(Ps=99%) and the test sample is no more unusual than 

90% of similar samples (90% CL).  Using historical data 

when we lack flight-lot data, we can ask how flight parts 

would perform for flight-lots no worse than, say, the 

90% WC lot (again, given the historical data sample is 

within a desired CL).  Finally, for similarity data, we 

can look at the worst-case part in the worst-case lot for 

the worst-case part type, all for selected Ps and CL. 
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Fig. 6 In the absence of the most representative data, flight-part radiation 

response can still be constrained statistically with less representative data, of 

which the flight parts are a subset.  Just as we use flight-lot data to constrain 

flight-part behavior, we can use historical data to characterize the distribution 

of variation across different lots of the flight part type, and data for similar 

parts to constrain variation across the fabrication process from one part type 
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to another.  In some cases, other relevant data—trends across feature-size 

generations, physics, etc.—can be used.   

 By considering which questions the data can answer, 

we can expand the sorts of data used to quantitatively 

bound flight part radiation performance.  This means 

that the following issues must be considered: 

1) Is the dataset sufficiently large to infer 

meaningful bounds on flight-part performance? 

Since our approach depends on how radiation response 

varies from part to part, lot to lot and across part types, 

the minimum number of parts, lots or part types we can 

use is 3 (the minimum number for estimating population 

standard deviation).  Although we are expanding the 

datasets used to bound flight part performance, usually 

we will not have a large dataset to work with.  As such, 

for sparse data, the method must be conservative.  Table 

II summarizes the minimum data requirements.   
 

TABLE II: MINIMUM DATA SETS FOR DIFFERENT DATA TYPES FOR TID 

Data Type Minimum data Goal 

Flight lot 

(usually TID) 
3 parts Bound flight part 

performance @ CL 

Historical 

(usually TID) 
3 lots (3 parts 

each) 

Bound WC part in WC 

lot for desired CLs for 

part type 

Similarity 

(SEE or TID) 
3 part types  (3 

lots, each with 3 

parts each) 

Bound WC part in WC 

lot for WC part type for 

desired CLs for process 

 

2) How do we construct statistics that allow us to 

maximize the parts in our dataset while still 

yielding meaningful constraints for flight parts? 

Given the limited data usually available for RHA, it is 

important to include as many similar parts as possible in 

the dataset, while still ensuring that the distribution of 

our statistic remains sufficiently compact to draw 

meaningful conclusions about flight part performance.  

For example, [16] which looked at TID-induced gain 

degradation of bipolar junction transistors (BJT), found 

that normalizing the post-irradiation gain of a transistor 

to its pre-irradiation gain allowed inclusion of parts with 

very different pre-rad gains while also reducing part-to-

part and lot-to-lot variance.  In some cases, similarity 

data can only provide a partial constraint—for example 

constraining the onset LET for SEL for components in a 

process, but not the limiting cross section which 

depends on the design of the specific parts.[17] 

3) How do we ensure that the data used are 

representative of our flight parts?   

 Ensuring that flight parts are in family with the parts 

used in the analysis is challenging even for conventional 

RHA methods.  When using historical or similarity data, 

the best precaution is to use data for as many lots or part 

types, respectively, as possible.  Seeming outliers may 

indicate problems with the assumptions of the analysis.  

Comparing the flight-part datasheet to those for the 

other parts in the database can also identify significant 

differences that may invalidate the analysis.  In some 

cases, the vendor may be helpful in validating the 

similarity of the parts.  However, validation of the 

approach requires flight-part radiation data—either from 

test or from application success or failure if no test data 

are forthcoming.  In Bayesian SEE and TID risk 

bounding methods outlined below, analysis of similarity, 

historical or even lot-specific test data can only 

influence a priori expectations of whether flight parts 

will succeed or not.  As discussed below, a Bayesian 

approach requires updating prior expectations with 

flight-part performance data. 

VI. BAYESIAN PROBABILITY AND SUBJECTIVITY 

To avoid confusion, it is helpful to understand that 

there are two types of probability.  Probabilities inherent 

to a phenomenon—e.g. when a particular radioactive 

nucleus will decay—are called objective.  No added data 

can refine our prediction. In contrast, Fig. 7 illustrates 

that some probabilities are subjective.  If we only know 

that 50% of the balls distributed among the 3 jars in the 

figure are white, we have no basis for selecting one jar 

over the others if we want to draw a white ball.  

However, we could increase our chances of success by 

measuring the proportion of white balls in each jar.  The 

probability we give for drawing a white ball from a jar 

depends on our knowledge when we estimate it.   

This problem resembles those of bounding flight-part 

radiation response using historical or similarity data.  

We know the overall distribution of TID response from 

historical data, but we do not know where our flight lot 

falls in that distribution. Or we know the SEE response 

for a fabrication process based on similarity data, but 

not where our flight part resides in that distribution.   

 

 
Fig.7 Subjective or Bayesian probability estimates are based on knowledge at 

the time of the estimate.  In the above example, if we only know that 50% of 

balls distributed among the three jars are white, our probability of 

successfully predicting the color of a ball drawn from a jar depend on which 

jar we pick. We can significantly better our odds by adding knowledge for the 

individual jars.  In this sense, the situation is similar to using RLAT to 

supplement our knowledge of historical performance of the parts.   
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Bayes’ Theorem plays a central role in updating 

probability estimates as new data become available. If  

the probability estimate of event Xi out of a set of 

possible events {Xj} before adding new data {d} (the 

prior probability) is Pprior(Xi), then the updated 

probability Ppost will be given by Bayes’ theorem:

 






1j

priorj

ipriori

ipost
)Xj(P)X|}d({P

)X(P)X|}d({P
})d{|X(P         (5) 

P({d}|Xi) is the likelihood of the {d} if Xi is true, and 

the denominator is a normalizing factor—the probability 

of {d} regardless of which event in the set {Xj} is true.  

Bayes’ Theorem can be generalized for continuous 

distributions f(x) and data y as follows: 




dx)x(f)x|y(f

)x(f)x|y(f

pr

pr)y|x(f             (5a) 

where f(y|x) is the likelihood of y at x and fpr(x) is the 

prior of f(x). 

 One of the most controversial aspects of Bayesian 

probability is the subjectivity of the Prior.  There are 

several ways to limit that subjectivity.  If the initial Prior 

is broad, it has little influence on the left side of (5), and 

the posterior resembles the likelihood.  Also, some 

versions of Bayesian probability (e.g. empirical 

Bayesian analysis) allow the Prior to be determined after 

looking at the data.  One locates the Prior near the peak 

likelihood, and the Prior’s width reflects the confidence 

in the data.   

  Figure 8 illustrates the relative influences of the data 

and the Prior.  For small datasets, the Prior can 

significantly influence the posterior distribution, and the 

latter can change dramatically as new data are added.  

However, as the data set grows, the distribution 

stabilizes and the Prior’s influence usually becomes 

negligible.  Moreover the flatter (less informative) the 

Prior, the more rapidly the data dominate.  Since RHA 

almost always deals with small datasets, it is important 

to minimize the influence of the initial Prior (before 

adding historical or similarity data)—or at least to 

ensure that it reflects valid constraints on the data. 

One may also ask why bother with the Prior when we 

could work with the Likelihood directly.  There are two 

reasons to favor a Bayesian approach over a likelihood-

based analysis.  The first is that Bayesian probabilities 

follow the laws of probability (e.g. normalization, 

additivity, etc.), and as such are more intuitive than the 

corresponding likelihood.  The second reason is that a 

Bayesian analysis is very flexible, and as such can use a 

broad range of data that would be difficult to exploit 

using likelihood.  Moreover, the logical structure of the 

data in Fig. 6 favors a Bayesian approach as discussed in 

section V.  Below, we begin by considering a Bayesian 

approach for SEE, since the negligible part-to-part and 

lot-to-lot variation significantly simplify the analysis.  In 

this case, we attempt to bound flight-part SEE rates or 

consequences (e.g. number of upset bits in an MBU, 

transient duration or amplitude, etc.) by looking at the 

SEE response of similar parts fabricated in the same 

process. Even when it is impractical to bound SEE rates, 

one may still place some bounds on SEE response.    
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Fig. 8 The influence of the Prior and the likelihood, L can be seen by 

considering a coin toss trial.  Prior1 considers all probabilities of tossing 

Heads, PH equally likely, while Prior2 slightly favors an “honest” coin with 

PH=0.5.  After 10 trials, we have 3 heads and 7 tails, yielding a (normalized) 

likelihood (open squares) in a).  The Posterior yielded assuming Prior1 

coincides with the normalized likelihood, while that resulting from Prior2 

reflects its influence.  In b), increasing the number of trials by a factor of 10, 

with the same proportion of Heads, we see that the Posterior distributions 

nearly coincide, regardless of the Prior assumes.   (In the legends, the bs refer 

to the beta distribution, which is the conjugate prior for the probability in the 

binomial distribution.) 

VII.  BAYESIAN BOUNDS ON SEE RISK 

Reference 15 applied Bayesian techniques to bound 

risks due to single-event transients (SET) in operational 

amplifiers and single-event latchup in analog to digital 

and digital to analog converters (ADCs and DACs).  The 

SET analysis modeled both rates and durations.  SET 
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amplitudes were also modeled, but the probability of 

rail-to-rail transients was sufficiently high that assuming 

such transients is prudent.  Although datasets were small 

for this work (5 op amps for one vendor and 6 for the 

other), the technique led to reasonable bounds on SET 

rates for the two vendors’ processes and to reasonable if 

somewhat conservative bounds on SET durations.  

Bounding SEL risk proved more challenging.  Not only 

did saturation cross sections vary by over a factor of 30 

among the ADCs and DACs, but the onset LETs for 

different parts fabricated in the same process seemed to 

exhibit a bimodal distribution.  Some parts have onset 

LETs in the single-digits while others were on the order 

of 15-20 MeVcm2/mg.  The resulting broad range of 

SEL rates made it impossible to develop compact 

distributions from which meaningful rate bounds could 

be determined.  However, we were able to model the 

lower mode of onset LET to determine the WC onset 

LET to be expected for ADCs and DACs in the 0.6 

micron CMOS process from ADI:  Over 90% of data 

converters in this process would likely have onset SEL 

LET0 > 2.3 MeVcm2/mg.   

It is instructive to discuss why the Bayesian 

techniques proved more amenable to analysis of SETs 

than SEL.  First, op amps are generally simpler than 

ADCs and DACs, and SET behavior in many op amps 

may be dominated by a few susceptible sites.[18]  

Moreover, the mechanism behind SETs is similar to the 

normal operation of the part—it is just the charge that is 

injected to the susceptible region anomalously.  In 

contrast, SEL is a complex, parasitic bipolar 

phenomenon that depends not just on the characteristics 

of the process, but also on the device circuit design and 

layout.  Thus it is not surprising that SEL would be 

much more variable even for similar parts fabricated 

within a process.  What this means is that it is very 

difficult to place meaningful bounds on flight-part SEL 

performance without data specific to the flight parts.  

One exception may be when data for several similar 

parts fabricated in a particular CMOS or BiCMOS 

process all indicate no SEL susceptibility.  It is not yet 

known whether this need for flight-part-type specific 

data applies to SEGR, SEB and other destructive SEE.  

Use of the Priors for SEE is fairly straightforward (see 

Fig. 9).  The Prior gives the probability that a particular 

probability distribution describes the variation of SEE 

response of similar parts across a particular fabrication 

process.  As such, one can draw contours that contain a 

particular cumulative probability such that all 

distributions outside the contour represent worse 

performance than those inside the contour.  If one then 

selects the worst-performing distribution inside the 

contour, that distribution represents the worst-case for 

the confidence level corresponding to the cumulative 

probability within the contour.   
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Lot Variation Negligible) 
Input as Prior to Flight-

Part Rate Estimation

Other Other

Update w/ flight part 
type  vs. LET or select 
dist. for bounding rate
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Combine Rate and Consequences 
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Flight Part         
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Across
Part Types

Consequence Distribution

Across
Part Types

 
Fig. 9 For SEE, part-to-part and lot-to-lot variation are usually considered 

negligible, so the Priors are based on the distribution of SEE rates and 

consequences over similar part types.  If data specific to the flight part types 

become available, these can update the Prior, or if no such data are available, 

appropriate bounding distributions can be used to bound flight-part risk.  
Alternatively, one can average over all possible 

candidate distributions weighted by their Bayesian 

probability to produce a best estimate of SEE 

performance rather than a worst-case bound for a given 

confidence level.  While such averaging is more 

computationally intensive, it preserves the maximum 

information originally in the data.  As such, it is 

recommended when one wishes to update the similarity-

data Prior with data specific to the flight part types.   

The above discussion assumes that part-to-part and 

lot-to-lot variation in SEE response are negligible.  If 

this is not the case, one must disentangle part-to-part, 

lot-to-lot and part-type-to-part-type variation, and the 

approach will resemble that we have developed for 

Bayesian TID RHA.  

VIII. BAYESIAN BOUNDS ON TID DEGRADATION 

The need to estimate the different sources of 

variability significantly complicates the use of 

historical and similarity data for bounding TID risk.  

Within a single lot, part radiation response (be it failure 

dose or parametric degradation at a particular dose) can 

usually be characterized by a well behaved distribution, 

with the most probable response occurring near the 

mean and the range of part responses being 

characterized by the standard deviation.  This does not 

mean that the distribution is normal, but if we know the 

mean and standard deviation, we can use the Method of 

Moments to determine which parameter values for a 

given distribution family (e.g. normal, lognormal, 

Weibull, etc.) best reproduce those moments. 

Looking at multiple lots of the same part type, part 

radiation response variability will itself vary across 

lots.  Both the mean and the standard deviation may 
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vary from lot to lot. This leads to two distributions, one 

of lot means and the other of lot standard deviations, 

and we can determine the mean and standard deviation 

for each of those distributions—four parameters 

characterizing part-to-part and lot-to-lot variability. 

Finally, if we bring in multiple part types (multiple 

lots of each), each of the four parameters described in 

the previous paragraph will vary from one part type to 

another—yielding four distributions, two characterizing 

the behavior of lot means and two characterizing the lot 

standard deviations.  These distributions describe how 

these quantities vary across the different part types 

fabricated in the process according to the data. 

Because similarity data are least representative of 

flight parts, we start with those data to construct our 

first Priors.  The four Priors describe the probability 

that a particular distribution describes the range of 

behaviors across part types.  The quantity , describes 

the expected (average) lot mean and its distribution 

describes how it varies from one part type to another 

for similar part types in the process.  The 

corresponding Prior describes the probability that 

various distributions describe this variation across part-

types.  Similarly,  describes the variation (expressed 

as standard deviation) from lot to lot of the lot mean, 

and  and  describe the expected lot standard 

deviation (measuring part-to-part variation in a lot) and 

the variation of that variability from lot to lot, 

respectively.  We want to select a distribution from the 

candidates to describe or bound each of the four 

variables for the parts fabricated in the process 

(including the flight part type).  We can determine 

these distributions in several ways: 

1) We can select the distribution with the highest 

Bayesian probability.  This distribution will best 

describes the data—especially if we have data for 

many part types fabricated in the process and the 

distribution is sharply peaked.  This selection is 

appropriate if we also have data specific to the 

flight part type and/or flight lot. 

2) We can select the distribution that yields worst-

case radiation performance consistent with a 

particular confidence as described in section VII. 

This is the best strategy when data are limited 

and we have no data specific to the flight parts or 

flight part type.   

3)  Finally, we can average over all distributions 

weighted by their Bayesian probability.  This 

approach preserves the most information from 

the similarity data, and it is likely the best 

strategy when we can update the similarity-based 

prior with historical and/or flight-lot data. 

Regardless of the method used, the result is four 

probability distributions: P(), P(), P() and P()  

(see Fig. 10).  If these four variables are uncorrelated, 

we can construct Priors for lot-to-lot variability: 

Pprior(,)=P() × P()                (6) 

Pprior(,)=P() × P()            (7) 

Avg. Lot ,   of Lot ,   of Lot , Avg. Lot , 
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Fig. 10 Bayesian risk assessment for TID is complicated because it must 

consider part-to-part and lot-to-lot variation as well as how these variabilities 

change as we look across similar part types fabricated in the same process.  

Beginning with distributions for expected TID performance and its variation 

across part types, Priors are updated or used to select Priors for the next stage 

(historical lot-to-lot variation).  The process is then repeated, updating 

historical Priors with flight-lot data or using them to bound likely flight-part 

performance based on a “worst-case” lot (for a desired confidence).   

These Priors represent the probability that lot-to-lot 

variation of the lot mean and standard deviation of 

radiation performance for a part type in the process is 

described by a distribution with mean  and standard 

deviation , and similarly for the lot standard deviation.  

If we have historical data (>3 lots) for the specific flight 

part type, we can update these Priors using Bayes’ 

Theorem.  If not, we can again use one of the three 

strategies listed previously to select an appropriate 

distribution to bound the radiation response of lots of 

the flight part type.  Using these P() and P(), we 

construct a Prior as in (6).  Then we update the Prior if 

we have flight-lot data or select a bounding Prior for the 

flight-lot radiation response.  While this approach may 

seem involved compared to the conventional approach 
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(as outlined in MIL-HDBK 814 for instance), it yields 

much more information—that is, not just the 

performance of the flight lot, but how this flight lot 

compares to historical lots and to other similar part 

types.  Moreover, it allows us to bound flight part 

radiation performance at all stages of the design process, 

from flight part selection through end of mission life and 

to tailor the conservatism in the analysis to the risk 

tolerance of the program.  

     This approach was applied[16] to estimating gain 

degradation in BJTs in two families—NPN transistors 

from Semicoa and PNP transistors fabricated by 

Microsemi-Lawrence (MS-L).  As discussed in section 

V, we chose as our radiation performance metric the 

gain degradation factor—the ratio of the pre-irradiation 

gain to the gain post-irradiation.  The analysis found that 

after 100 krad(Si), gain of an average Semicoa NPN 

would likely degrade less than a factor of 5 and that 

after 300 krad(Si) the MS-L PNP gains would likely 

degrade by less than a factor of 3.  Often, these bounds 

would be sufficient to dispense with radiation testing on 

the flight parts. 

 The biggest challenge in carrying out this analysis was 

finding enough different transistor types that had been 

tested for sufficiently close conditions that we could 

make meaningful inferences about variability in gain 

degradation across lots and across part types.  However, 

despite the limited data, the analysis yielded reasonable 

and useful bounds on the degradation to expect from a 

generic Semicoa NPN or MS-L PNP.  It also provided 

context for where a particular lot or transistor type fell 

within the family of parts.  For example, the 2N3700 

exhibits slightly less gain degradation than other 

Semicoa NPNs on average, but has slightly more lot-to-

lot variability, whereas for the MS-L PNPs, the 2N2907s 

exhibited both the greatest average degradation and the 

most lot-to-lot and part-to-part variation.   

IX. UPDATING PRIORS AND HERITAGE DATA 

Bayesian probability is an ongoing process—data are 

always being added to update the Prior and improve our 

subjective understanding of what we are studying.  

Ideally, such updates would use the most representative 

test data.  However, such testing may exceed the budgets 

of low-cost missions.  In such cases, mission success or 

failure serves as the data for updating the Prior.  This 

presumes sufficient insight into failures to determine 

which parts contributed to the failure.  Although such 

insight is also challenging for low-cost missions, 

without it, platform reliability cannot improve over time.  

 Once a mission has ended, its success or failure 

becomes “heritage data”.  If a mission succeeds, we can 

treat it as a suspension or time/dose truncated life test—

that is, as a life or TID test that ended prior to failure.  

Thus, if the mission of duration tm were flying n parts, 

the resulting likelihood of success is  
n

t

0
f

n

dt))t(P1( 




  L                 (8) 

Here Pf(t) is the failure distribution we are trying to 

determine.  (For TID, we can approximate dose as 

increasing linearly with time, so we can integrate over 

time rather than dose.)  For such analyses, the constant 

failure rate for SEE makes updating the Prior with such 

data easier for these threats. A constant failure rate 

means the Pf(t) is exponential, and the only parameter 

required is the mean lifetime.  Reference [15] also looks 

at how to apply heritage missions in different 

environments, finding that in terms of SEE, a year in 

geostationary orbit equates to 2.9-4.3 years in a polar 

orbit (750 km, 98 degrees inclination, sun-synchronous), 

depending on the geometry of the device sensitive 

volume (SV), and to 6.5-24.6 years in an International 

Space Station orbit (500 km, 51.6 degrees inclination), 

again depending on SV geometry. 

 Applying heritage data to TID RHA is more 

problematic.  First, mission dose estimates used for 

radiation design margins (RDM) are upper bounds, 

leading to a significant overestimate of the component 

hardness.  Even more serious is the fact that failure 

probability may be negligible up to the end of the 

mission and then increase dramatically at only slightly 

higher doses.  As such, the worth of TID heritage data is 

limited unless it encompasses a large number of parts or 

unless the mission doses for the current mission are 

much lower than those of the heritage mission.  For 

instance [16] showed that 40 heritage parts would be 

needed to ensure 99% probability of mission success 

with 90% confidence if the heritage parts received 2x 

the mission dose of the current mission.  Fortunately, 

TID testing is usually less expensive than SEE testing 

and may be possible for many low-budget missions. 

X. VERIFYING ASSUMPTIONS 

Whenever a statistical model is used for hardness 

assurance, there is a risk that the part types may not 

conform to model assumptions.  Small samples increase 

the odds that such deviations may go undetected and 

introduce systematic errors into the analysis.  Thus, 

verification methods to test consistency with models are 

essential to successful RHA even for conventional 

methods.  They are even more crucial when using 

Bayesian methods with diverse types of data.  

Understanding the sorts of pathologies that occur in a 

dataset is essential if the data are to be modeled 

correctly—and once a pathology is discovered in a part 
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fabricated in a particular process, the other parts in the 

process should be analyzed for similar pathologies.   

As an example, the OP484 data shown in Fig. 4 seem 

to exhibit bimodality, but how do we show this, 

particularly when dealing with small test samples?  As 

seen in section IV, one approach is to combine parts 

across lots into an aggregate distribution.[19]  This is 

justified for the OP484, because the part-to-part 

variation within a lot is roughly commensurate with the 

lot-to-lot variation of the lot mean and standard 

deviation.  Fig. 11 shows increased leakage current for 9 

lots individually as well as where individual part Ibias 

values fall relative to the tails of the upper and lower 

modes of the aggregate distribution. 
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Fig. 11 The pathology in OP484 radiation response can be characterized by 

comparing fits of the data to unimodal and bimodal lognormal distributions.  

This reveals that the lowest Ibias in lot 2 has less than a 1% probability of 

belonging to the same upper mode as the other parts in the lot, while the parts 

in lot 3 all most likely fall in the lower mode—albeit just barely. 
 

An important question is whether any of the lots 

exhibit bimodality, or whether the bimodality is only 

from lot to lot. Fig. 4 suggests the rough locations and 

widths of the two modes, and it also shows that lot 2 

seems to have parts occurring in both modes.  To better 

determine this, we fit the aggregate data to both a 

unimodal lognormal and a bimodal lognormal using 

maximum likelihood.  While the bimodal distribution 

will fit better, how can we compare the two fits, since 

the bimodal fit has five parameters while the unimodal 

has two?  Akaike’s Information Criterion (AIC) corrects 

for this effect by penalizing the more complex model 

with a term proportional to the number of parameters, k, 

while the goodness of fit is measured by the likelihood.  

We use the corrected form AICc for small data sets, n: 

1kn
)1k(k2

k2)],(log[2AICC 


 XΘL  (9) 

where L(,X) is the maximum likelihood for the k-

parameter vector  and the data vector X and n is the 

data count in X. 

For as few as 3 lots (any variability for 2 lots will likely 

appear bimodal), AIC strongly favors a bimodal model.  

The evidence for bimodality continues to increase up to 

6 lots and then levels out.  AIC selects the model with 

the greatest predictive power, rather than the model that 

gives the best fit.  This can be seen in Fig. 12, where we 

have plotted the 99% worst predicted Ibias after 100 

krad(Si) for 90% confidence (calculated using one-sided 

tolerance limits and the best-fit lognormal mean and 

standard deviation) for the unimodal model and the 

worst-case mode of the bimodal model. 
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Fig. 12 Based on AIC, three lots of data for the OP484 are sufficient to show 

that the bimodal model has better predictive power for change in Ibias.  This 

is also supported by the fact that the bimodal 99/90 WC Ibias remains very 

stable as new data are added, whereas the corresponding quantity assuming 

unimodal behavior overpredicts the change and fluctuates wildly.   

 

The bimodal estimate is lower, more reasonable and 

more stable, further suggesting that the bimodal model is 

correct.  Moreover, the bimodal fit yields not just the 

position and width of each mode, but also the relative 

proportion in each mode (about 50% for the OP484).  In 

Fig. 11, we indicate with a solid line the Ibias with equal 

probability of belonging to either distribution.  Data 

above the dashed line have >5% probability of 

belonging to the upper mode, and below the dotted line, 

a >5% probability of belonging to the lower mode.  Only 

lot 3 contains data that fall between these two lines.  

This suggests that the lowest data point from lot 2 most 

likely belongs to the lower mode, indicating bimodal 

response in a single lot is possible for this device.   

 Often, the nature of the pathology for a dataset may 

not be as obvious as OP484 bimodality.  For the NES 

2N5019 JFETs shown in Fig. 5, it is not clear whether 

the 3 order-of-magnitude spread arises due to 

bimodality, outliers or “maverick” parts or is indicative 

of a thick tail for the distribution of increased gate-to-

source current after irradiation.  To better ascertain the 

nature of the distribution, we use a rank plot for the data, 

along with a lognormal fit to the data both with and 
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without a candidate outlier (Fig. 13). Omitting the worst 

data point does not improve the fit of a lognormal to the 

data (R2=0.823 with the worst point and 0.818 without 

it), suggesting that this point is not an outlier, and a 

distribution with a thicker tail than lognormal is likely 

required to fit the tail of the distribution. 
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Fig. 13 A fit to an aggregate distribution of increased IGSS for the 2N5019 

JFET shows that the tails of a lognormal distribution are too thin to model the 

large part-to-part variation.  Omitting the worst case part does not improve 

the agreement between the model and data, indicating that the worst-case part 

is likely not an outlier and the distribution is actually thick-tailed.  

 

 In contrast to the situation for the 2N5019, [19] found 

evidence of an outlier when comparing increased 

leakage input bias current after 50 krad(Si) for parts 

fabricated in LTC’s RH process.  Among parts in this 

process, the RH27 exhibits slightly more increased Ibias 

after 50 krad(Si) (~10% more than the next worst part).  

However, Fig. 14 shows that part-to-part variability for 

the RH27 is much greater—to the extent that excluding 

the RH27 from the sample significantly improves the 

goodness of fit of the data to a lognormal (R2 moving 

from 0.64 to 0.98).  A subsequent call to LTC revealed 

that the RH27 uses the same mask set as the OP27, and 

so has no circuit-level hardening.  Other parts in the 

process use both circuit- and process-level hardening. 

 Preliminary analyses such as those applied above for 

TID can also be used to ensure that similarity analyses 

for SEE use the largest range of similar parts possible 

while excluding outliers and identifying pathologies.  

Moreover, to ensure that SEE are Poisson, analyses 

similar to those used in section IV to ensure 

exponentiality in fluences to failure can be used to test 

this assumption for any part type, as long as the fluences 

between errors are known.  If the distribution of fluences 

between errors deviates from exponential, it is likely 

that the error generating process is not purely Poisson.   

XI. PRESENTATION OF RESULTS 

Statistical inference based on historical or similarity 

data can be a valuable aid for radiation test planning, on-

the-fly test decisions, selection of parts or design 

strategies and a variety of other mission critical 

activities.  However, radiation analysis results must be 

conveyed effectively to the designers ultimately 

responsible for those decisions.  Here we discuss tools 

that facilitate visualization of statistics and 

understanding of results and their confidence levels.  To 

facilitate accessibility, we have used widely available, 

open-access tools.  Most of the plots in this section are 

created using the statistical coding language R [20], 

along with the graphics add-on ggplot2.[21]. 
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Fig. 14 Examination of the change in input bias current (Ibias) of op amps 

and comparators fabricated in the LTC RH process reveals that the RH27 op 

amp shows far more part-to-part variation than other parts fabricated in the 

process—to the extent that including it distorts the lognormal fit for the other 

parts in the process.  This suggests the RH27 is an outlier.  

A. SEE results  

Because estimated SEE rates typically depend on the 

parameters of a cumulative Weibull fit to the  vs. LET 

data, it is important to convey as much information as 

possible in plots of the data so that analysts and 

engineers unfamiliar with the testing can assess data 

reliability, the conservatism of the fit and so on.  For 

example, Fig. 2 in section II presents not just SEL  vs. 

LET data for the LTC1419 ADC, but also error bars and 

best and 90% WC fits. The table below the figure shows 

how the limited data affect confidence in the error rate.  

These data are sufficient to give designers an idea of the 

range of probabilities of an SEL during the mission. 

In contrast, when dealing with SET, the rate is 

sufficiently high that the occurrence of the event is a 

virtual certainty during the mission.  In such cases, 

designers need to understand transient characteristics so 

that appropriate filtering or other mitigation can be 

implemented.  In the past, this was often conveyed by 

specifying a transient that was worst-case in terms of 

both amplitude and duration, whether such a transient 
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were realistic or not.  Statistical plots allow us to convey 

much more information to designers, allowing them the 

option to design for more realistic transients and to 

tailor filtering to the risk tolerance of the application.  

Fig. 15 shows a duration vs. amplitude scatterplot of the 

raw transient data gathered during a laser SEE test of the 

Texas Instruments LMP2012 op amp, the resulting 

histograms of both amplitude and duration and a contour 

plot of the probability density function (PDF) derived 

from the raw data using the “density()” tool built into 

the R core software.  The PDF plot is particularly useful 

for tailoring mitigation to risk tolerance.  The 

histograms are useful for determining possible outliers 

and extreme events.   

 
Fig. 15 SET data for the Texas Instruments LMP2012 op amp observed 

during laser SEE testing.  Data in the duration-amplitude scatter plot are 

projected to also give duration and amplitude histograms. 

B. TID results  

As seen in section IX, viewing lot test data in the 

context of archival data for historical lots and similar 

part types can lead to a different conclusion than one 

would reach based solely on the numerical results of the 

test.  Conveying this context can be crucial to building 

consensus for difficult RHA decisions.  If a part exhibits 

significant lot-to-lot TID variation and one is working 

with small test samples, context becomes even more 

important, and usually the best way to convey the 

context is graphically.  Many types of graphs and charts 

are used to convey statistical information.  The scatter 

plots, histograms and PDF contours discussed in the 

context of SETs illustrate some options.  In sections III 

and IX, we used rank or quantile plots to assess, 

respectively, whether failure fluences followed expected 

exponential behavior and to look for outliers or multiple 

modes.  These plots offer a graphical method of 

comparing two probability distributions or comparing 

data to a theoretical distribution to gain insight into the 

data’s behavior. We can also compare data for two 

different historical lots or two different part types to 

assess whether inclusion in a historical or similarity data 

analysis is appropriate (e.g. to determine Priors for 

statistical inference). 

To illustrate how historical context can affect RHA 

decisions, consider an issue encountered for the 

Magnetospheric Multi-Scale (MMS) Mission.  Lot 

#1016 of Microsemi JANTXV2N3700 NPN BJT failed 

to meet its specified gain hfe2 (collector to emitter 

voltage, VCE=10 V and collector to emitter current, 

ICE=0.1 mA) after 25 krad(Si).  Although the parts have 

no radiation guarantee, the rapid failure raised questions 

about the trustworthiness of the lot even for low-gain 

applications.  Radiation analysts compared lot 1016’s 

behavior to those of historical lots (0702 and 2462).  

Fig. 16 shows the cumulative distribution (CDF defined 

as rank divided by # samples) for all three lots at 25, 50, 

75 and 100 krad(Si). This shows that lot 1016’s 

performance is similar to that of lot 2462 and that there 

is large lot to lot variation for all doses. 

 
Fig. 16 Cumulative distribution function (CDF) of gain hfe2 for three lots of 

data at four dose steps. 

 

In Fig. 17 we compare lot-to-lot variation more 

directly, plotting (a so-called quantile-quantile or Q-Q 

plot) the gain at a given quantile for one lot against the 

gain for the same quantile for another lot (for each 

dose).  The greater the curvature seen in the series, the 

more dissimilar the behavior of the lots.  These plots 

show that hfe2 for lot 1016 degrades at lower doses than 

for the other two lots, and that the greatest difference is 

seen at 50 krad(Si).  At 75 krad(Si) and 100 krad(Si), the 

other lots start to catch up, but still remain less degraded 

than lot 1016.  Again, lots 1016 and 2462 have similar 
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performance, while lot 0702 is much harder. The 

difference is most pronounced at 25 and 50 krad(Si). 

Fig. 18 shows the combined probability density 

function of each lot’s mean and standard deviation of 

hfe2 normalized to its pre-rad value.  The mean gain 

exhibits very different behavior with dose for each lot as 

indicated by the separation of the probability density 

into two groupings as dose increases in Fig. 18. 

 
Fig. 17 Quantile – Quantile plot comparing gain for pairs of lots selected from 

the three lots.  Straighter lines in the plot indicate similar performance of the 

two lots, while curved lines indicate different performance.  
 

The PDF used in both Fig. 18 (as well as that in Fig. 

15) results from combining the kernel density estimation 

of the dataset for each mean and standard deviation. We 

used the “density()” tool built into the R core software. 

For a given datapoint the kernel density is approximated 

with an optimized bandwidth from a Gaussian 

distribution. This information could be used to establish 

our Priors for Bayesian analysis. 

XII. CONCLUSIONS 

Although the basic statistics of RHA have been 

understood for decades, techniques for analyzing both 

SEE and TID have advanced significantly.  These 

techniques facilitate not only improvements for 

conventional RHA methods, they also introduce the 

possibility of using unconventional data sets to 

quantitatively bound flight-component radiation 

performance.  In terms of conventional RHA, the 

techniques we have applied above are both 

generalizations of likelihood analysis:  Generalized 

Linear Models use likelihood to parameterize 

complicated models, such as the Weibull form for  vs. 

LET in SEE analysis.  The Akaike Information Criterion 

(and related quantities) makes it possible to compare the 

performance of models with different complexities by 

penalizing complex models (which usually give better 

fits to the data) relative to simple ones.  This makes the 

criterion for selecting a model not just its goodness of 

fit, but rather its predictive power. While the example 

we cite above used AIC to distinguish between unimodal 

and bimodal TID degradation in the OP484 op amp, the 

technique could also prove useful in SEE analysis 

challenges such as identifying whether multiple 

mechanisms contribute to a particular SEE, determining 

the optimum number of charge collection volumes in a 

complex Monte Carlo based rate estimation and so on. 

We have also discussed use of Bayesian analysis for 

both TID and SEE hardness assurance. Bayesian 

methods are well suited to many problems that arise in 

RHA because many of the probabilities encountered are 

subjective—that is, the probabilities can change if we 

add information to our current understanding.   

There are several advantages to Bayesian methods:  

They bound risk at all stages of the analysis, so that the 

radiation analyst can determine if more information (e.g. 

testing, analysis, etc.) is needed.  The methods assign 

candidate models a probability rather than a likelihood, 

making interpretation easier.  Also, Bayesian methods 

are sufficiently flexible that almost any relevant data can 

be used.  Moreover, as long as the flight parts are not out 

of family compared to the data we bring to the analysis, 

the bound we estimate will likely be conservative, since 

the flight parts are always a subset of the data we use.  

This is important for RHA, because often the datasets 

available are not large. 

 
Fig. 18 A combined PDF for three lots of 2N3700 transistors from Microsemi 

generated using the density() tool in the R statistics package. 
 

The key to successful application of these new 

techniques lies in understanding the questions the data 
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under consideration can answer and how those answers 

constrain the likely radiation performance of the flight 

parts under consideration.  For example, historical data 

for the flight part type can tell us how a 99% worst-case 

part will perform for a 90% worst-case lot of the flight 

part, and similarity data can yield such data for a 90% 

worst case part type fabricated in the same process.  The 

resulting bounds may suggest that we have high 

confidence of the flight parts fulfilling their mission 

requirements—or if not, the Priors on which these 

bounds were based can be updated with data specific to 

the flight parts.   

Statistical models like those discussed above offer the 

ability to bound flight-part performance economically 

and reliably.  Also, because the method relies on 

historical test data, it ensures that this valuable resource 

is put to maximum use and provides added incentive to 

standardize test methods and make the data as easy to 

interpret as possible.  Moreover, because one can adjust 

the desired confidence level and degree of conservatism, 

the method can be tailored to the risk tolerance of the 

hardware being analyzed.  Finally, because the methods 

are extremely flexible, they can be adapted to include 

increasing levels of complexity.  For example, analytical 

models of SET performance can be used to interpolate 

performance of components to different application 

conditions.  Priors can be developed based on 

technology trends, and so on.   

However, perhaps the most significant contribution 

these methods make is to emphasize the continual nature 

of RHA.  This is especially true for Bayesian methods.  

While we use the Prior to infer likely radiation 

performance of flight parts, these predictions must be 

validated and the Priors updated by the infusion of new 

data—be it test data or heritage data for the mission in 

question.  This ensures that both the methodology and 

the spacecraft reliability improve over time. 
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