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Acronyms and Symbols
CL=Confidence Level
DSEE=Destructive Single-Event Effects
GCR=Galactic Cosmic Ray
HI=Heavy Ion
LET=Linear Energy Transfer
LET0=Onset LET
LETEQ=Equivalent Linear Energy Transfer=energy deposited in SV, divided by product of SV depth and SV density.
pdf=probability density function
ρ=“rho”=density of Si (2.33 g/cm3)
s, W=Shape and width parameters for the Weibull distribution/form
SEB-Single-Event Burnout
SEE=Single-Event Effect
SEGR=Single-Event Gate Rupture
SEL=Single-Event Latchup
SOTA=State Of The Art
SDRAM=Synchronous Dynamic Random Access Memory
SRAM=Static Random Access Memory
SPE=Solar Particle Event
SV=Sensitive Volume
σ=“sigma”=Cross section
σsat=Saturated Cross Section
TID=Total Ionizing Dose
Xstr=transistor
Z=Atomic number of a nucleus or atom=# of protons in nucleus
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Can Heavy-Ion Rates Be Bounded with Protons
• Heavy Ion (HI) Testing:

– Is Expensive
– Is Time-Consuming
– Requires extensive modification 

of test parts
– Increasingly difficult to schedule
– Some parts may be nearly 

impossible to test w/ normal 
accelerator ions.

– Very hard to test boards/boxes.

• Proton testing
– Causes SEE via recoil ions

• 3≤Z≤15
– Produces ions reaching  sensitive 

volumes even in difficult parts
– Allows  board/box-level testing

• Promises significant savings 
in cost and schedule

• Can Heavy-Ion SEE rates be 
bounded with proton data?
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Some Challenges w/ protons
• Protons inefficient at producing ions

– ~1/2.9E5 200-MeV protons produces 
a recoil ion; all contribute dose

• We don’t know Z, energy, angle or LET 
of an ion that causes a given SEE

• Proton recoils low energy/short range
– Last year, showed this was very important for 

assessing destructive SEE susceptibilities
– Cannot compare recoil to GCR or SPE ions
– Introduce                           , ρ=Si density,   

_d=depth of SEE SV
– If LET ~ constant in SV, LETEQ ~ Effective LET

)d(
ELET Dep

EQ ×ρ=



Coverage of SEE Tests

• Coverage of SEE test—how well it probes 
potentially vulnerable areas on test item

– Units: µm2 per ion or transistors (xstr) per ion.

• IR photomicrograph of 60×70 µm2 area of 
ELPIDA EDS5108 512 Mbit SDRAM

– Expect 1.45 recoil ions for 1010 200-Mev p/cm2

• Intel I7 processor ~ 1 ion per 8000 xstr
– Intel 8080 8-bit processor had 6000 transistors

• These are average values
– 10% of parts could have missed areas >78800 µm2
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But, Not All Ions Are Created Equal

• Low-LET ions must hit much smaller cross section to cause SEE
• Ion fluence drops with LET in almost any environment

– Broader σ vs. LET (larger Weibull Width, W)→lower rate
– Larger shape parameter s → lower rate

• Proton recoil fluences 
– Very few proton recoil ions w/ LET>10 MeVcm2/mg
– Short range of proton recoils → fluence vs. LETEQ drops even faster for deep SV
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SEE Rate Bounds for Shallow SV

• Constraints from proton testing too weak to determine σ vs. LET, but event 
count can tell us which models are inconsistent with the proton data

• Assume device SV made up of NSV representative 1-micron cube SVs
– LET varies little across this sensitive volume, so LETEQ ~effective LET

– Estimate # errors expected for a single 1-micron-cube SV for 175 representative models
• W={5, 10, 15, 20, 25}, s={0.5, 1, 1.5, 2, 2.5}, LET0= {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 MeVcm2/mg)}

– Solve for NSV using upper bound on Poisson Mean for NE (e.g. 2.31 for 90% CL if 0 events seen)
– Result: Model performs worst at both high LET0 (where ions are scarce) and low LET0, where 

increase in GCR fluence is more rapid than increase in fluence of recoil + cascade ions.
– Note: CRÈME-MC emulator—uses stored CRÈME-MC results for proton recoils and CRÈME-96 

rates for each candidate σ vs. LET model—can be generalized for any SV
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Deep SV Are More Challenging
• Chord-length pdf changes as σ rises

– Use Nested SV to approximate σ vs. LET model
– Use Fluence(LETEQ) for SV depth
– Estimate NE and solve for NSV

• For 10-µm cube SV
– If device σ bound >10-2 cm2, method fails
– For 1010 200-MeV p/cm2 122 failures/175 models
– For 3E11 200-MeV p/cm2, 40.6% of models fail
– Protons can bound rate if  fluence high, LET0 is 

low and σ vs. LETEQ rises rapidly enough 
– Requires added information or assumptions
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~70% of models fail 

~41% of models fail 



Energy and Fluence Dependence
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Table I: Parameters w/ >50% Successful Bound

~10% of σ vs. LETEQ
models fail

>75% failures



Why Bounding Fails

• Method fails to bound heavy-ion susceptibility if ion fluence falls 
faster then cross section rises vs. LETEQ. (high LET0, W or s).

– Deep SV push fluence distribution left—increasing likelihood of method failure
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Board/Box-Level Testing

• Board/box-level testing irradiates many parts w/ diverse technologies
– Saves money, but different SV depths mean parts see different Fluence vs. LETEQ dist.
– Proton test may vary in effectiveness for every device on board
– Need to know as much as possible about technology of each device to make sense of 

proton data
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Chip SV



Summary and Conclusions
• Proton SEE data does constrain heavy-ion SEE performance

– Constraints may be weak due to important differences between recoils and GCR

• Coverage key to whether test reveals SEE susceptibilities
– Ions per unit area or per transistor is a first approximation, but not all ions equally 

capable of causing SEEs
– Rate bounds that consider potential σ vs. LET  form are more informative

• Shallow SV: LET~ constant through SV—bounding straightforward
– Consider σ vs. LET models for which proton recoils may be effective

• LET0≤6.5 Mevcm2/mg, width≤25, shape≤2.5—other models will perform worse.
– Estimate rate for single SV—How many SVs possible for test to yield null result?
– Bounding rate likely ≤0.001/day—worst bounds at both low and high LET0

• For deep SV, ions range limited—use nested SV approach
– Many plausible models fail to yield meaningful bound
– Increased fluence and energy help, but only for SV depth ≤ 10 µm

• The problem is inherent to proton testing
– Charge deposited by proton recoils in deep SV limited by range, not LET
– Fluence vs. LETEQ compressed toward lower LETEQ, where σ

• Applies to SEL—even worse for SEB/SEGR (coverage worse)
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Possible Future Directions
• Proton SEE data only weakly constrain HI SEE susceptibility

– Must supplement data with other information to increase effectiveness
• E. g. constrain LET0, w, s, σsat w/ process and/or similarity data
• Well suited to Bayesian treatment—as this makes subjective assumptions explicit

• Current analysis predicated on DSEE physics of failure
– Need to understand SV geometry for DSEE better
– Are there mitigating factors that would lead to tighter WC bounds on HI rates?

• Cannot be ruled out, but no indication at present

• Develop methods to make sense of board/box-level tests
– Fluctuations lead to worse coverage for some chips than others

• Improves less than linearly with increased fluence
– Different SV depths lead to exposure to different equivalent environments

• Significantly complicates extrapolation of board-level proton tests to HI environment
– For these reasons, board/box-level bounding rates must increase at least 

linearly with board/box complexity (e.g. # of parts)

• Despite problems, proton testing may be the only option for many 
complicated highly integrated components

• One certainty: interpreting results will not be simple
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