

Evaluating Constraints on Heavy-Ion SEE Susceptibility Imposed by Proton SEE Testing and Other Mixed Environments

R. L. Ladbury and J.-M. Lauenstein Radiation Effects and Analysis Group NASA Goddard Space Flight Center Greenbelt, MD 20771 USA

Acronyms and Symbols

CL=Confidence Level DSEE=Destructive Single-Event Effects **GCR=Galactic Cosmic Ray** HI=Heavy Ion LET=Linear Energy Transfer LET₀=Onset LET LET_{FO}=Equivalent Linear Energy Transfer=energy deposited in SV, divided by product of SV depth and SV density. pdf=probability density function ρ ="rho"=density of Si (2.33 g/cm³) s, W=Shape and width parameters for the Weibull distribution/form **SEB-Single-Event Burnout** SEE=Single-Event Effect SEGR=Single-Event Gate Rupture SEL=Single-Event Latchup SOTA=State Of The Art SDRAM=Synchronous Dynamic Random Access Memory SRAM=Static Random Access Memory SPE=Solar Particle Event SV=Sensitive Volume σ ="sigma"=Cross section σ_{sat} =Saturated Cross Section **TID=Total Ionizing Dose** Xstr=transistor Z=Atomic number of a nucleus or atom=# of protons in nucleus

Can Heavy-Ion Rates Be Bounded with Protons

Heavy Ion (HI) Testing:

- Is Expensive
- Is Time-Consuming
- Requires extensive modification of test parts
- Increasingly difficult to schedule
- Some parts may be nearly impossible to test w/ normal accelerator ions.
- Very hard to test boards/boxes.

Proton testing

- Causes SEE via recoil ions
 - 3≤Z≤15
- Produces ions reaching sensitive volumes even in difficult parts
- Allows board/box-level testing
 - Promises significant savings in cost and schedule
- Can Heavy-Ion SEE rates be bounded with proton data?

Some Challenges w/ protons

- Protons inefficient at producing ions
 - ~1/2.9E5 200-MeV protons produces a recoil ion; all contribute dose
- We don't know Z, energy, angle or LET of an ion that causes a given SEE
- Proton recoils low energy/short range
 - Last year, showed this was very important for assessing destructive SEE susceptibilities
 - Cannot compare recoil to GCR or SPE ions
 - Introduce $LET_{EQ} = \frac{E_{Dep}}{(\rho \times d)}$, ρ =Si density, d=depth of SEE SV
 - If LET ~ constant in SV, LET_{EQ} ~ Effective LET

NASA

Coverage of SEE Tests

1E10 200 MeV protons/cm²

1E7 heavy ions/cm²

1E12 200 MeV protons/cm²

- Coverage of SEE test—how well it probes potentially vulnerable areas on test item
 - Units: μm^2 per ion or transistors (xstr) per ion.
- IR photomicrograph of 60×70 μm² area of ELPIDA EDS5108 512 Mbit SDRAM
 - Expect 1.45 recoil ions for 10¹⁰ 200-Mev p/cm²
- Intel I7 processor ~ 1 ion per 8000 xstr
 - Intel 8080 8-bit processor had 6000 transistors
- These are average values
 - 10% of parts could have missed areas >78800 μ m²

But, Not All Ions Are Created Equal

- Low-LET ions must hit much smaller cross section to cause SEE
- Ion fluence drops with LET in almost any environment
 - Broader σ vs. LET (larger Weibull Width, W) \rightarrow lower rate
 - Larger shape parameter $s \rightarrow$ lower rate
- Proton recoil fluences
 - Very few proton recoil ions w/ LET>10 MeVcm²/mg
 - Short range of proton recoils \rightarrow fluence vs. LET_{EQ} drops even faster for deep SV

SEE Rate Bounds for Shallow SV

- Constraints from proton testing too weak to determine σ vs. LET, but event count can tell us which models are inconsistent with the proton data
- Assume device SV made up of N_{SV} representative 1-micron cube SVs
 - LET varies little across this sensitive volume, so LET_{EQ} ~effective LET

$$\mathbf{N}_{E} = \int_{\text{LET}_{0}}^{\text{LET}_{\text{Max}}} \mathbf{N}_{SV} \times \mathbf{F}(\text{LET}_{EQ}) \times \sigma(\text{LET}_{EQ}, \text{LET}_{0}, \mathbf{w}, \mathbf{s}) d\text{LET}_{EQ}$$

- Estimate # errors expected for a single 1-micron-cube SV for 175 representative models
 - W={5, 10, 15, 20, 25}, s={0.5, 1, 1.5, 2, 2.5}, LET0= {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 MeVcm2/mg)}
- Solve for N_{SV} using upper bound on Poisson Mean for N_E (e.g. 2.31 for 90% CL if 0 events seen)
- Result: Model performs worst at both high LET₀ (where ions are scarce) and low LET₀, where increase in GCR fluence is more rapid than increase in fluence of recoil + cascade ions.
- Note: CRÈME-MC emulator—uses stored CRÈME-MC results for proton recoils and CRÈME-96 rates for each candidate σ vs. LET model—can be generalized for any SV

Deep SV Are More Challenging

• Chord-length pdf changes as σ rises

- Use Nested SV to approximate σ vs. LET model
- Use Fluence(LET_{EQ}) for SV depth
- Estimate N_E and solve for N_{SV}
- For 10-μm cube SV
 - If device σ bound >10⁻² cm², method fails
 - For 10¹⁰ 200-MeV p/cm² 122 failures/175 models
 - For 3E11 200-MeV p/cm², 40.6% of models fail
 - Protons can bound rate if fluence high, LET₀ is low and σ vs. LET_{EQ} rises rapidly enough
 - Requires added information or assumptions

Energy and Fluence Dependence

Table I: Parameters w/ >50% Successful Bound

Parameter	LET ₀		
Fluence (cm ⁻²)	(MeVcm2/mg)	s	w
200 MeV, 10 ¹⁰	< 2	< 1	< 10
200 MeV, 3×10 ¹¹	< 5	< 1.7	< 22
400 MeV, 10 ¹⁰	< 3.5	< 1.2	<12
400 MeV, 10 ¹¹	< 6.5	< 2.2	< 25

Presented by Raymond Ladbury at the 2016 Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC), Portland, Oregon, July 11-15, 2016

Why Bounding Fails

- Method fails to bound heavy-ion susceptibility if ion fluence falls faster then cross section rises vs. LET_{EQ}. (high LET0, W or s).
 - Deep SV push fluence distribution left—increasing likelihood of method failure

Board/Box-Level Testing

• Board/box-level testing irradiates many parts w/ diverse technologies

- Saves money, but different SV depths mean parts see different Fluence vs. LET_{EQ} dist.
- Proton test may vary in effectiveness for every device on board
- Need to know as much as possible about technology of each device to make sense of proton data

Summary and Conclusions

- Proton SEE data does constrain heavy-ion SEE performance
 - Constraints may be weak due to important differences between recoils and GCR
- Coverage key to whether test reveals SEE susceptibilities
 - lons per unit area or per transistor is a first approximation, but not all ions equally capable of causing SEEs
 - Rate bounds that consider potential σ vs. LET form are more informative
- Shallow SV: LET~ constant through SV—bounding straightforward
 - Consider σ vs. LET models for which proton recoils may be effective
 - LET₀ \leq 6.5 Mevcm²/mg, width \leq 25, shape \leq 2.5—other models will perform worse.
 - Estimate rate for single SV—How many SVs possible for test to yield null result?
 - Bounding rate likely \leq 0.001/day—worst bounds at both low and high LET₀
- For deep SV, ions range limited—use nested SV approach
 - Many plausible models fail to yield meaningful bound
 - Increased fluence and energy help, but only for SV depth \leq 10 μm
- The problem is inherent to proton testing
 - Charge deposited by proton recoils in deep SV limited by range, not LET
 - Fluence vs. LET_{EQ} compressed toward lower LET_{EQ}, where σ
- Applies to SEL—even worse for SEB/SEGR (coverage worse)

Possible Future Directions

- Proton SEE data only weakly constrain HI SEE susceptibility
 - Must supplement data with other information to increase effectiveness
 - + E. g. constrain LET0, w, s, σ_{sat} w/ process and/or similarity data
 - Well suited to Bayesian treatment—as this makes subjective assumptions explicit
- Current analysis predicated on DSEE physics of failure
 - Need to understand SV geometry for DSEE better
 - Are there mitigating factors that would lead to tighter WC bounds on HI rates?
 - Cannot be ruled out, but no indication at present
- Develop methods to make sense of board/box-level tests
 - Fluctuations lead to worse coverage for some chips than others
 - Improves less than linearly with increased fluence
 - Different SV depths lead to exposure to different equivalent environments
 - Significantly complicates extrapolation of board-level proton tests to HI environment
 - For these reasons, board/box-level bounding rates must increase at least linearly with board/box complexity (e.g. # of parts)
- Despite problems, proton testing may be the only option for many complicated highly integrated components
- One certainty: interpreting results will not be simple