

Considerations for GPU SEE Testing

Edward J. Wyrwas edward.j.wyrwas@nasa.gov 301-286-5213 Lentech, Inc. work performed in support of NEPP

Acknowledgment:

This work was sponsored by: NASA Electronic Parts and Packaging (NEPP) Program

Acronyms

Acronym	Definition
DUT	Device Under Test
GPU	Graphics Processing Unit
MBU	Multi-Bit Upset
NEPP	NASA Electronic Parts and Packaging
PTX	Parallel Thread Execution
RTOS	Real-time Operating System
SBU	Single-Bit Upset
SEE	Single Event Effect
SEFI	Single Event Functional Interrupt
SEU	Single Event Upset
SIMD	Single Instruction Multiple Data
SoC	System on Chip

2

Outline

- GPU technology
- The setup around the test setup
- Parameter considerations
- Lessons learned

Technology

- Graphics Processing Units (GPU) & General Purpose Graphics Processing Units (GPGPU)
 - Are considered a compute device or coprocessor
 - Is not a standalone multiprocessor
- Using high-level languages, GPU-accelerated applications run the sequential part of their workload on the CPU – which is optimized for single-threaded performance – while accelerating parallel processing on the GPU.

Purpose

- GPUs are best used for single instructionmultiple data (SIMD) parallelism
 - Perfect for breaking apart a large data set into smaller pieces and processing those pieces in parallel
- Key computation pieces of mission applications can be computed using this technique
 - Sensor and science instrument input
 - Object tracking and obstacle identification
 - Algorithm convergence (neural network)
 - Image processing
 - Data compression algorithms

Device Selection

 Unfortunately, GPUs come in multiple types, acting as primary processor (SoC) and coprocessor (GPU)

Intel Skylake Processor

Device Software

- Does it need its own operating system?
 - E.g. Linux, Android, RTOS
- Can we just push code at it?
 - E.g. Assembly, PTX, C
- Payload normalization
 - Can we run the same code on the previous generation and next generation of the device?
 - Cannot with CUDA code; can with OpenCL

Real-time Operating System (RTOS) Parallel Thread Execution (PTX) CUDA is a parallel computing platform and application programming interface model created by Nvidia

Payloads

- Visual Simulations
 - Sample code
 - Fuzzy Donut (i.e. Furmark)
- Sensor streams
 - Camera feed
 - Offline video feed
- Computational loading
 - Scientific computing models
- Easy Math
 - 0 + 0 … wait … should = 0

Test Setup

- Things to consider in the test environment
 - Operating system daemons
 - Location of payload and results
 - Data paths upstream/downstream
 - Control of electrical sources
 - Temperature control (i.e. heaters) in a vacuum
- Things to consider in the device under test (DUT)
 - Is the die accessible?
 - What functional blocks are accessible?
 - Which functions are independent of each other?
 - Does it have proprietary or open software?

Test Environment

- Beam line
 - DUT testing zone where collateral damage can happen
 - Shielding for everything non-DUT
- Operator Area
 - Cables, interconnects and extenders
 - Signal integrity at a distance
 - "Everything that was done in a lab, in front of you on a bench, now must be done from a distance..."

To be presented by Edward Wyrwas at the Single Event Effects (SEE) Symposium and Military and Aerospace Programmable Logic Devices (MAPLD) Workshop, La Jolla, CA, May 22-25, 2017. 11

Test Environment (Cont'd)

Tripod and mounting

External power

Power injection

Arrows and circle mark locations of the lead and acrylic block fortresses

Test Environment (Cont'd)

DUT Health Status

- Accessible nodes
 - Network
 - Heart beat by inbound ping
 - Heart beat by timestamp upload
 - Peripherals response
 - "Num lock"
 - Visual check
 - Remote
 - Local
 - Local with remote viewing
 - Electrical states

Monitoring Data

Monitoring Data (Cont'd)

- Significant digits are important
- Resolution is needed for correlation
 - Faster sampling speed
 - Smaller units (µV or mV, not Volts)

Monitoring Data (Cont'd)

• Even better (albeit being a mock up):

→ & ●							
ontinuous Po	ower Supply I	Monitor Rev 1	.0-rel EXIT	Ch1 800m- 600m-	635.501m	LOGGING	5 ON
SType Simulation	Save Settings	C Reset	Leave Pwr ON After Latch?	Mon 600m- En Latch 1 400m-	\frown		P
SET	Recall Settings	Status?	Master Latch Control	Latch1 200m-			OF
			1 CH ALL CHS	0- 19-2	:24	19:25:29 Heat M	
HANNEL 1 Voltage (V)	CHANNEL 2 Voltage (V)	CHANNEL 3 Voltage (V)	CHANNEL 4 Voltage (V)	Ch 2 2	653.372m		ON
5	5	5 5	5	Mon 750m- En Latch 2 500m-			OFF
OVP (V)	OVP (V)	OVP (V)	OVP (V)	Latch 2 250m-			_
Current Limit (A)	Current Limit (A)	Current Limit (A)	Current Limit (A)	0-			
	1	1	1		23	19-25-28	
OCP	OCP	OCP	OCP	Ch 3 1- 800m-	414.803m	Digit	-110
Disable OCP Delay	Disable OCP Delay	Disable OCP Delay	OCP Delay	Mon 600m-		Digit	
0.001	0.001	0.001	0.001	En Latch 3 400m- Latch 3 200m-			2
				0-			5
DUT	CH 2 OUT	CH 3 OUT	CH4 OUT		24	19:25:29	5
				Ch 4 0 100u-	0.000	5	5
	EN 2	EN 3 🕖	EN 4	Mon -250m -		6	0
6						7	õ
ALL O			ALL OFF	Latch 4 -750m-		TAM	

What does a failure look like?

Failures

Learning Experience

- Every test is another learning experience
 - "Is the laser alignment jig in the beam path..."
 - Nuances with controllable nodes
 - DUT power switch
 - Remote power sources
 - DUT electrical isolation from test platform
 - Thermal paths
 - Improvements are always possible, but preparation time may not be as abundant
 - Prioritization during development is important
 - Software payload
 - Hardware monitoring
 - Remote troubleshooting capabilities

Conclusion

- NEPP and its partners have conducted proton, neutron and heavy ion testing on several devices
 - Have captured SEUs (SBU & MBU),
 - Have seen traceable current spikes,
 - But predominately have encountered system-based SEFIs
- GPU testing requires a complex platform to arbitrate the test vectors, monitor the DUT (in multiple ways) and record data
 - None of these should require the DUT itself to reliably perform a task outside of being exercised
- Progress has been made in proving out multiple ways to simulate and enumerate activity on the DUT
 - Narrowing down on a universal test bench
 - End goal is to make test code platform independent