COTS 3D NAND Flash: SEE Test Results and Challenges

Edward Wilcox, Michael Campola, Kenneth LaBel NASA Goddard Space Flight Center

Outline

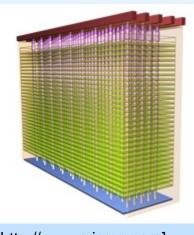
- Present State of Flash Memory
- NASA GSFC Testing Status
 - Devices Under Test
 - 3D NAND Flash Results To Date
- COTS Flash Memory Testing Challenges
 - Packaging, Availability, and Electrical Access
- Future Plans

Acronyms

- COTS: Commercial Off The Shelf
- ECC: Error-Correcting Code
- EDAC: Error Detection and Correction
- GEO: Geostationary Earth Orbit
- LET: Linear Energy Transfer
- MBU: Multiple Bit Upset
- MLC: Multi-level Cell
- NAND: Not AND (Flash Technology)
- NEPP: NASA Electronics and Packaging Program
- QLC: Quad-level Cell
- RBER: Raw Bit Error Rate

- SBU: Single Bit Upset
- SEE: Single Event Effects
- SEFI: Single Event Functional Interruption
- SEU: Single Event Upset
- SLC: Single-level Cell
- SSD: Solid State Drive
- TID: Total Ionizing Dose
- TLC: Triple-level Cell
- UBER: Uncorrected Bit Error Rate

State of Flash Memory


- Limitations of 2D Highly-Scaled Flash
- 3D Structures Maturing / Available
 - Samsung 64-layer VNAND[™]
 - Toshiba / Western Digital / SanDisk 64-layer BiCS3[™]
 - Micron / Intel 64-layer
 - Hynix 72-layer
- 1TB SSD <\$500; 6Tb+ in a single package!
- Not just discrete components to worry about
 Integration into SoC- and SoB-type applications

3D NAND Structure

- Vertical flash strings, with 64 layers now common
- Not to be confused with 3D-stacking of multiple die in package

chipworks

[http://www.micron.com]

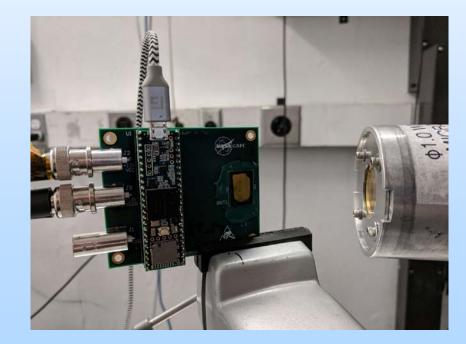
Close-up image of V-NAND flash array

[https://www.3dincites.com/2014/08/samsungs-3d-vnand-flash-product-spires-el-dorado/]

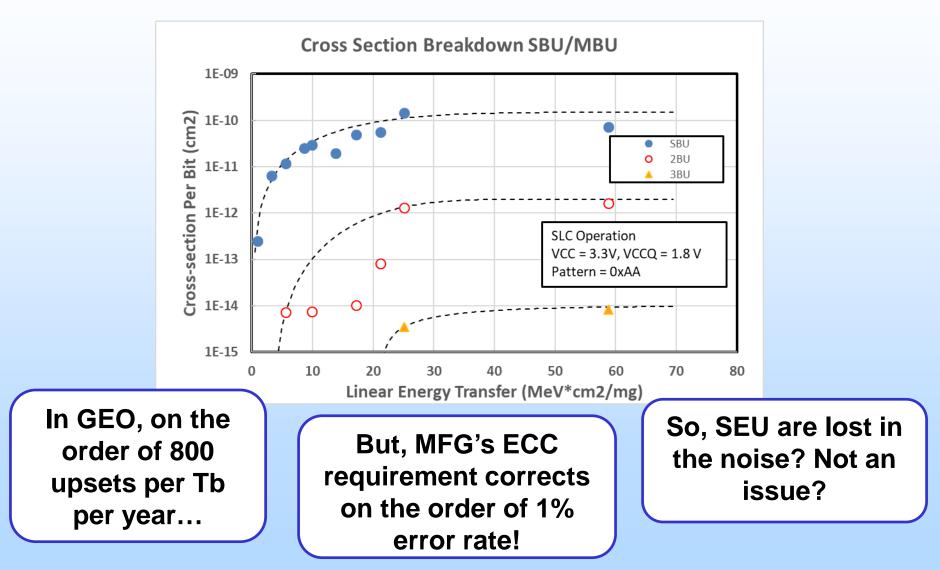
NEPP / NASA GSFC Testing Status

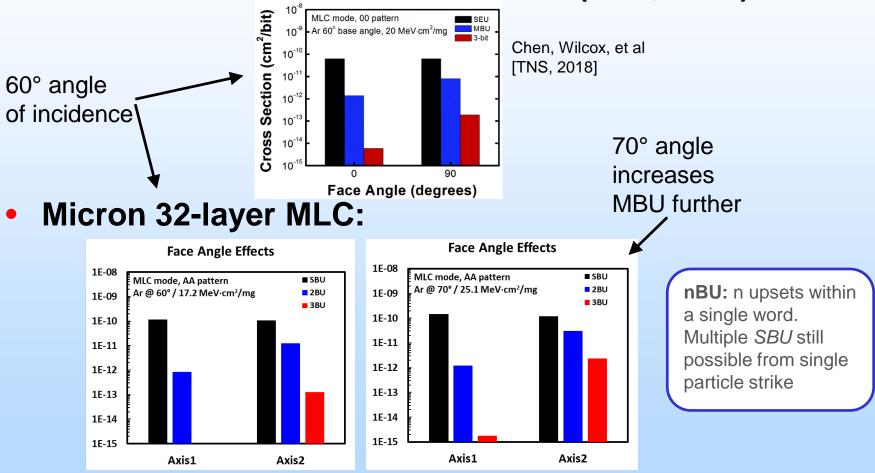
- Previous NEPP SEE testing on Hynix 3D
 - 36 layer vs new 72-layer
 - D. Chen, NSREC 2017; TNS Jan. 2018
- 2017/2018 SEE testing on Micron MLC 3D NAND
 - 32 Layer, floating gate technology
 - 1Tb packages with four 256Gb die
 - Limited availability / required teaming for procurement
 - Re-used simple microcontroller test setup
- On-going SEE testing on variety of SSD modules
 - Major manufacturers have their latest flash on SSDs
 - Easy procurement BUT limited documentation
 - No direct electrical access to memory devices

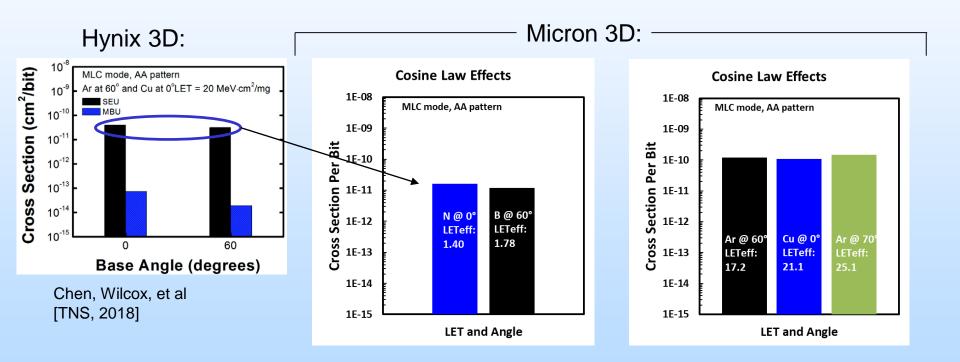
Devices Under Test


- Micron MT29F1T08CMHBB
 - 256Gb die; MLC; 32 layers; piece-part testing
- Micron MT29F768G08EEHBB
 - 384Gb die; TLC; 32 layers; Crucial MX300 SSD module
- Intel
 - 256Gb die; TLC; 64 layers; Intel 545 SSD module
- Samsung
 - TLC; 64 layers; Samsung T5 Portable SSD
- SanDisk/Toshiba
 - TLC; 64 layers; WD Blue 3D SSD module
 - 15nm planar TLC; WD Blue SSD module
- Hynix H27QDG822C8R-BCG
 - Piece-part testing; MLC; 36 layers

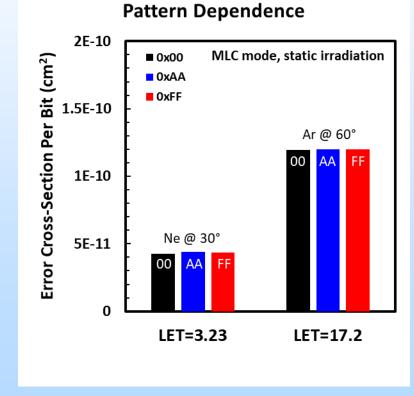
Micron MT29F1T08CMHBBJ4


- Leveraged previous NASA test setups with Cortex-M4 microcontroller
 - Simple asynchronous interface
 - Low-level electrical access; no mapping or abstraction
 - No ECC \rightarrow We can actually see bit upsets...

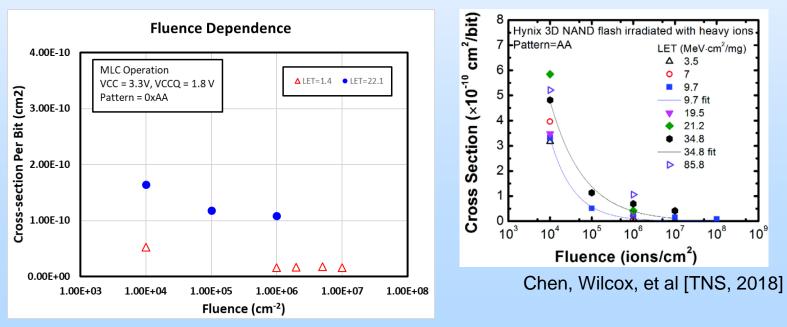

Micron MT29F1T08CMHBBJ4


• Dakai Chen on Hynix 36-layer MLC (TNS, 2018):

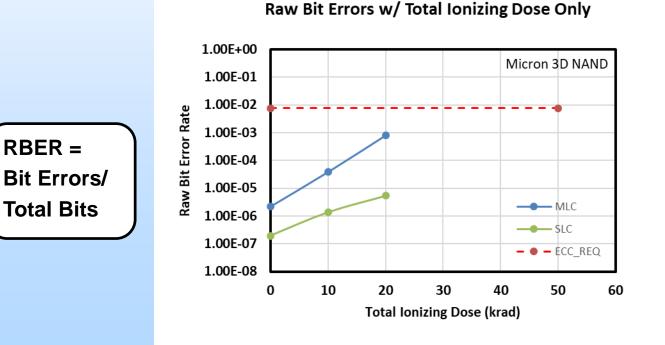
3D NAND Angular Effects, Constant LET


 How does "Cosine Law" apply with 3D NAND flash?

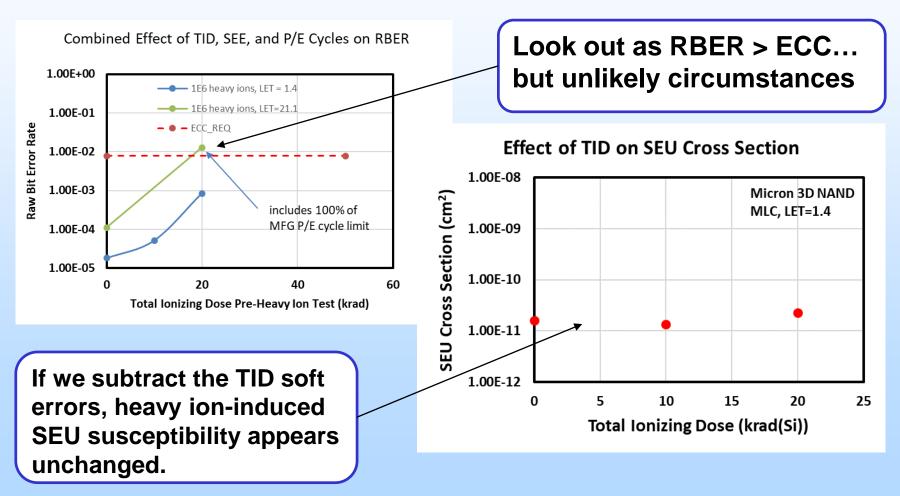
Data Pattern Dependence


 For Micron 3D NAND, no discernable pattern dependence (0's and 1's are being mapped evenly)

Fluence Dependence


- Programmed-cell Vth is a distribution not an ideal ON or OFF
- Consider some cells "easier" to upset than others
- Reduced effect compared to previously observed Hynix 3D MLC flash.
- Relevant to understanding accelerated SEE test results!

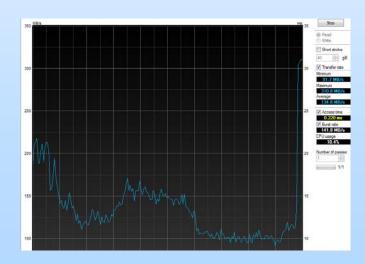
TID Effects

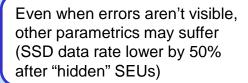

- Let's look at adding TID into the mix
- Shifts Vth distribution of flash cells... just like
 - Heavy-ion particle strikes
 - Program-Erase cycles

Micron Combined Effects

How does TID before SEE affect error rate?

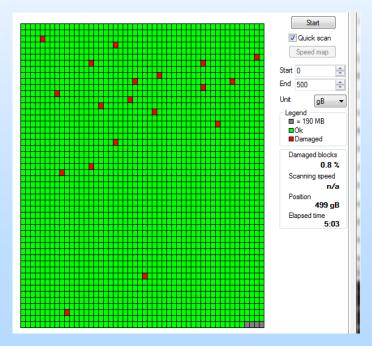
SSD Test Setup




- Solid State Hard Drives are easy to buy, easy to use, and hard to test at the bit level!
 - Abstraction, logical address mapping, EDAC, etc
- Number of upsets expected from SEU *low* compared to memory size and built-in error rate
- Can we observe general trends from manufacturer-to-manufacturer in state-of-the-art 3D NAND flash?
- Can TID or program/erase cycling magnify effect for easier comparison?
- Can we learn anything about effects of SEU on SSDs?

SSD Test Results – WD Blue 3D SSD

- Irradiated to 1x10⁶cm⁻² N (LET 1.4 MeV·cm²/mg)
 - Nothing observed on tester...
- Up to 1x10⁸cm⁻²
 - Still nothing
 - Based on Micron 3D NAND testing we'd guess on the order of .0016 upsets/bit
 - No reported uncorrectable errors



WD Blue 3D Continued

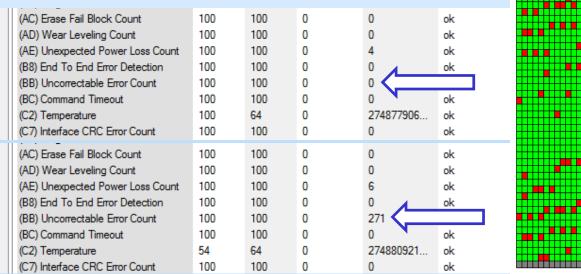
- Pre-SEE testing: 10krad (Si) exposure
 - No SSD errors noted following TID
- Irradiated to 1x10⁷ cm⁻² Copper (LET 21.1 MeV·cm²/mg)
 - Waited for full readback of drive... and nothing.
- Up to 1x10⁸cm⁻²
 - Based on Micron 3D NAND MLC testing we'd guess on the order of .010 upsets/bit.
 - Errors abound (next slide)!

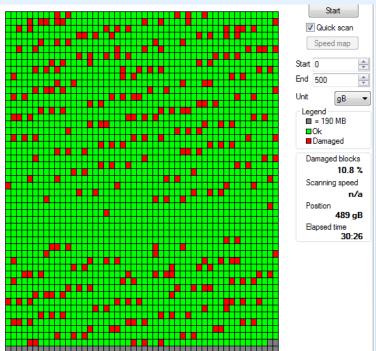
WD 3D Blue SSD Data

• Nothing abnormal noted immediately after run:

(AC) Erase Fail Block Count	100	100	0	0	ok
(AD) Wear Leveling Count	100	100	0	0	ok
(AE) Unexpected Power Loss Count	100	100	0	4	ok
(B8) End To End Error Detection	100	100	0	0	ok
(BB) Uncorrectable Error Count	100	100	0	0	
(BC) Command Timeout	100	100	0	0	ok
(C2) Temperature	100	50	0	214748364	ok
(C7) Interface CRC Error Count	100	100	0	0	ok

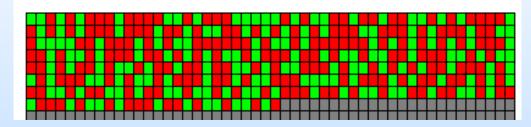
• But, after reading back drive:


(AC) Erase Fail Block Count	100	100	0	0	ok
(AD) Wear Leveling Count	100	100	0	0	ok
(AE) Unexpected Power Loss Count	100	100	0	5	ok
(B8) End To End Error Detection	100	100	0	0	ok
(BB) Uncorrectable Error Count	100	100	0	78	
(BC) Command Timeout	100	100	0	0	ok
(C2) Temperature	57	50	0	214750527	ok
(C7) Interface CRC Error Count	100	100	0	0	ok


S.M.A.R.T. attributes showed interesting data only after allowing drive controller to learn its own condition.

WD 3D Blue SSD Data

- Same LET, but at 65° angle
- Pre-SEE testing: 10krad (Si) exposure
- Irradiated to 1x10⁸ cm⁻² Ar @ 65° (LET 21 MeV·cm²/mg)
 - Several step irradiations with readbacks, no errors through 5x10⁷cm⁻².
 - Big changes after final step:

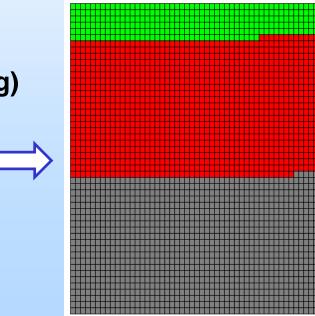


Presented by Edward Wilcox at the Single Event Effects (SEE) Symposium and Military and Aerospace Programmable Logic Devi.

Other SSDs Tested

- Intel 64-layer TLC
 - 10 krad(Si) + 1x10⁸ cm⁻² @ LET 1.4:
 - All clean
 - Separate device, 0 krad, 1x10⁸ cm⁻² Copper (LET 21.1):

Continued SSD Data


Samsung 64-layer VNAND

- Clean at 1x10⁷cm⁻² Copper (LET 21.1 MeVcm²/mg)
- Few errors at 5x10⁷cm⁻².
- Stopped mounting for ~1 hour
- Fully erasable and now normal

Micron 32-layer TLC

- 1x10⁸ cm⁻² N (LET=1.4 MeVcm²/mg)

(01) Raw Read Error Rate	100	100	0	3677	ok
(05) Reallocated Sector Count	4	4	10	1120	failed
(09) Power On Hours Count	100	100	0	648	ok
(0C) Power Cycle Count	100	100	0	55	ok
(AB) Unknown Attribute	100	100	0	2	ok
(AC) Unknown Attribute	100	100	0	1087	ok
(AD) Unknown Attribute	100	100	0	4	ok
(AE) Unknown Attribute	100	100	0	38	ok
(B7) SATA Downshift Count	100	100	0	0	ok
(B8) End To End Error Detection	100	100	0	0	ok
(BB) Uncorrectable Error Count	100	100	0	27	ok
(C2) Temperature	77	41	0	253404184	ok
(C4) Reallocated Event Count	100	100	0	1120	warning
(C5) Current Pending Sector	100	100	0	24	warning
(C6) Offline Uncorrectable	100	100	0	0	ok
(C7) Interface CRC Error Count	100	100	0	1	attention

Challenges

- SSD testing adds layers of abstraction and mapping on top of error-correcting code.
- Effectively impossible to see any individual errors, even MBUs and minor SEFIs; major SEFI events likely to dominate error-response
- Must test as a black-box system
 - Ok if you're trying to *characterize* a black-box system, but limited insight into marginal degradation at part level

Future Plans

- Generational scaling in 3D layer count and feature size will continue
 - Test piece parts when able, but SSD-type testing possible as well
- Evaluate combined effects, particularly as TLC/QLC cells continue to erode margins and increase RBER
 - TID/SEE/Endurance/Retention all tightly coupled