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Acronyms
• Application specific integrated circuit (ASIC)
• Collected charge (Qcoll)
• Combinatorial logic (CL)
• Commercial off the shelf (COTS)
• Complementary metal-oxide semiconductor

(CMOS)
• Critical charge (Qcrit)
• Device under test (DUT)
• Edge-triggered flip-flops (DFFs)
• Error rate (λ)
• Error rate per bit(λbit)
• Error rate per system(λsystem)
• Field programmable gate array (FPGA)
• Flip flop (DFF)
• Fluence (Φ)
• Input – output (I/O)
• Intellectual Property (IP)
• Linear energy transfer (LET)
• Low cost digital tester (LCDT)
• Material density (ρ)
• Mean fluence to failure (MFTF)
• NASA Electronic Parts and Packaging (NEPP)
• Operational frequency (fs)
• Personal Computer (PC)
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• Probability of configuration upsets (Pconfiguration)
• Probability of Functional Logic upsets

(PfunctionalLogic)
• Probability of single event functional interrupt

(PSEFI)
• Probability of system failure (Psystem)
• Processor (PC)
• Radiation Effects and Analysis Group (REAG)
• Reliability over fluence (R(Φ))
• Single event effect (SEE)
• Single event functional interrupt (SEFI)
• Single event latch-up (SEL)
• Single event transient (SET)
• Single event upset (SEU)
• Single event upset cross-section (σSEU)
• Shift register (SR)
• Voltage (Vdd)
• Windowed shift register (WSR)
• Xilinx Virtex 5 field programmable gate array (V5)
• Xilinx Virtex 5 field programmable gate array

radiation hardened (V5QV)
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Device Penetration of Heavy Ions and 
Linear Energy Transfer (LET)

• LET characterizes the
deposition of charged
particles.

• Based on average energy
(E) loss per unit path length
(x) (stopping power).

• Mass is used to normalize
LET to the target material.
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Characterizing Single Event Upsets (SEUs): 
Radiation Testing and SEU Cross Sections

Terminology:
• Flux: Particles/(sec-cm2)
• Fluence: Particles/cm2

σseu is calculated at several LET values 
(particle spectrum)

fluence
errors

seu
#

=σ

SEU Cross Sections (σseu) characterize potential upsets 
that occur when a device is exposed to ionizing particles.

4

Does simple error counting 
pertain to a complex 
system?...  
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FPGA Structure Categorization as 
Defined by NASA Goddard REAG

σSEU Differentiation:

Test structures and various techniques target specific FPGA 
categories for σSEU analysis
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Design σSEU Configuration σSEU Functional logic σSEU SEFI σSEU

Sequential and 
Combinatorial logic 
(CL) in data path

Global Routes 
and Hidden 
Logic
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OVERVIEW OF UPDATES
• Academic versus mission specific single event effect (SEE)

device evaluation
• SEE visibility enhancement during radiation testing
• Mean fluence to failure analysis (MFTF); i.e., testing flushable

architectures versus non-flushable architectures
• Mission specific system-level single event upset (SEU)

response prediction
• Heavy-ion energy and linear energy transfer (LET) selection
• Proton versus heavy-ion testing
• Fault injection
• Intellectual property core (IP Core) test and evaluation
• Unreliable design and its affects to SEE Data
• Mitigation evaluation (embedded and user-implemented)
• Single event latch-up (SEL) test and analysis
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Academic versus Mission Specific 
Ground SEE Testing

• A distinction should be made regarding the purpose of
data collection:
– academic study for component-level SEE sensitivity; or
– extrapolation for mission survivability predictions.

• A component level study will not be indicative of system
behavior.
– System topology considerations
– Variation in transistor types
– Co-dependencies between components
– Electrical masking
– Complexity of extrapolation from component to system

• Mission specific testing will be complex and will not
cover full state space traversal.

• Benefiting from each of the pros to recover from cons:
for FPGA test and evaluation, we propose testing a
mixture of academic and mission specific.
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Conventional Academic Testing: 
Long Chains of Inverters

• Testing long chains of inverters was a conventional method for evaluating
combinatorial logic susceptibilities to single event transients (SETs).

• ASIC (lab-made) test structures showed elongation of SETs as they
propagated through the inverter chain.  This is misleading:

• Test structures have unbalanced rise and fall times.  This causes SET
elongation.

• Commercial ASIC circuits are created by experienced designers and are
balanced; will not have the same response. MISLEADING test results.

• Commercial FPGA circuits are also balanced.  No SET elongation.
• However, configuring long chains of inverters will cause too much noise in

a FPGA design.  Will cause catastrophic SEE test results.

Long Chain of Inverters
I/O 

Block

I/O block will filter 
small transients 

Long chains of inverters are noisy and are consequently not good 
design practice.  They should not be used as test structures.
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Conventional Academic Testing: Long 
Chains of Flip-Flops (DFFs)

• The test structure is a long chain of DFFs connected serially; otherwise
referred to as a shift-register (SR).

• Pro: Commonly used for measuring sequential logic SEUs in FPGAs.
• The number of DFFs is generally in the 100’s to 1000’s.
• Original SEU testing evaluated SRs that were purely sequential logic, i.e.,

only DFFs.
– Currently, tests are also performed with combinatorial logic (CL) placed

between the DFF stages.
– Adding CL helps to analyze SET capture by DFFs.

• Due to I/O signal integrity issues, the SRs were also tested at very low
frequencies.
– Windowed shift registers can be reliably used to test at high

frequencies.
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Proposed Academic Testing 
Enhancements: Windowed Shift Registers

• Windowed output provides the option for high frequency testing without
causing board-level signal integrity issues.

• All DFF nodes are observable by the tester.
• The inclusion of combinatorial logic facilitates evaluation of combinatorial

logic effects, i.e., SET capture.
• Meets synchronous design requirements if all DFFs are connected to the

same balanced clock tree.
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Topology is still too simple to be the sole source of 
data extrapolation for a mission specific design.
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Mission Specific Testing 
Considerations

• In order to predict mission reliability, it is best to analyze
systems that closely resemble those that will be employed in
the mission.
– This requires the system-under-test have comparable complexity

and maintain proper design topology.
• Challenge: mission-specific applications are complex systems

that make SEU data collection challenging:
– This is mostly because visibility into system circuitry and state

space traversal are minimized per SEE test.
– Data obtained during radiation testing can be misrepresentative.
– Consequently the data might not correctly characterize SEU

response per mission specific operational modes; and could lead
to poor (and perhaps catastrophic) design implementations
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Proposed Enhancements to Mission 
Specific Testing

• Study system trends by parameter variation:
– Investigate different test structures that vary in complexity;
– Vary operational frequency and input patterns;
– Force a variety of state-space traversal schemes per test;
– Perform as many tests as possible;

• Increase visibility of internal circuits and their
contributions to susceptibility.

• These actions help to identify dominant sources of error;
and better extrapolate data to mission-specific systems.

Mission specific testing can provide data that better
characterizes your target.  However, visibility into DUT failure 

mechanisms is essential.
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Mission Specific Testing: Increasing Visibility 
with Embedded Microprocessor Testing (1)

Halted
Error
Trace Instruction
Trace Valid Instruction
Trace Exception Taken
Trace Exception Kind
Trace Register Write
Trace Register Address
Trace data cache Request
Trace data cache Hit
Trace Data cache Ready
Trace Data cache Read
Trace Instruction cache Request
Trace Instruction cache Hit

TESTER

Watchdogs

Send watchdog 
errors to host 
PC

DUT
DUT: device under test
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Mission Specific Testing: Increasing Visibility 
with Embedded Microprocessor Testing (2)
• Visibility was increased by isolating memory accesses as

follows:
– Moving the instruction and data storage to the LCDT for traffic

observation.
– Performing tests with and without cache to determine the influence

cache has on upsets.

• Differentiating global upsets from the normal data set:
– Helps to understand which upsets are prominent.
– Gives insight to how the use of cache will affect σSEUs.

• Monitoring internal MicroBlazeTM signals
– σSEUs are not reliant on detecting erroneous memory read and writes

anymore.  Data are too limited and uninformative with solely relying
on memory reads and writes.

– Can now determine when a processor crashes and how.

LCDT: Low cost digital tester
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Mission Specific Ground Testing and 
Mean Fluence to Failure (MFTF)

• Academic test circuits are
flush through:
– Faults occur and will be

flushed through the circuit.
– Can keep testing after the

fault occurs.
– Can use a counting metric of

faults per particle exposure.
• Mission specific designs are

complex and tend to crash
upon fault.
– They are not flush through

circuits.
– Test until fault occurs.
– Proposed metric is MFTF.
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Goal: Predict System-Level SEU 
Reliability 

• NEPP is investigating the application of classical
reliability performance metrics combined with single
event upset (SEU) empirical data to improve space
application reliability prediction.

• Proposed methodology is being investigated in three
phases:
– Simplified proof-of-concept.
– Omnidirectional effects of ions to system

susceptibility.
– Geometric limitations.
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NEPP Proposed Prediction Methodology
• Calculate MFTF per LET (obtain SEU

data via ground testing).
• Create a histogram of particle flux

versus LET for the mission’s required
time-window in the expected target
environment.

• Note: Each bin’s maximum LET
(LETmax) is a ground test point; and
has an associated MFTF.

• Graph reliability across fluence (R(Φ))
for each of the LET test points and
their associated MFTFs. R(Φ)=e-Φ/MFTF

• Each LETmax is associated with a bin
of particle fluence for a given time
window.  Use this fluence to determine
the reliability for each bin.

• Analyze the reliabilities across all bins.

17

1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03

Fl
ux

(p
ar

tic
le

s/
(c

m
2 *

10
-m

in
ut

es
)

LET Bins (MeVcm2/mg)

Space Data 
Histogram



Presented by Melanie Berg at Government Microcircuit Applications and Critical Technology Conference, Miami, FL, March 12-15, 2018.

Determining Expected Reliability using 
MFTF and Space Data Particle Fluence
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first bin of particle flux. 
Expected number of particles is 
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Selection of LET for Ground Heavy-
Ion SEE Testing

• The proposed methodology requires careful LET selection during
ground testing.

• This is especially true for commercial (or sensitive) devices.
• Because of the high particle counts at low LETs, it is best to

reduce the size of the histogram bins.  Hence, tests should be
performed at as many low LET values as possible.

• When possible, test at different energies to obtain similar LETs.
Take note – SEU response should be statistically equivalent.

• Test at different angles to achieve similar LETs.  SEU response
should be statistically equivalent.

• When effective LETs do not provide statistically accurate SEU
responses, geometrical device specifics need to be investigated.
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Summary

• In 2012, NASA Electronic Parts and Packaging (NEPP)
developed a robust test and analysis (hardness
assurance) methodology for FPGA component
evaluation and SEE data application.

• Since 2012, FPGA circuit complexity has increased
exponentially.

• With the combination of complexity management and
years of lessons learned material, the documentation is
currently being updated.

• This presentation highlights a select portion of the
guideline updates.
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