

A New Approach to System-Level Single Event Survivability Prediction

Presented by Melanie Berg at the Microelectronics Reliability & Qualification Working Meeting (MRQW), El Segundo, CA February 6-7, 2018

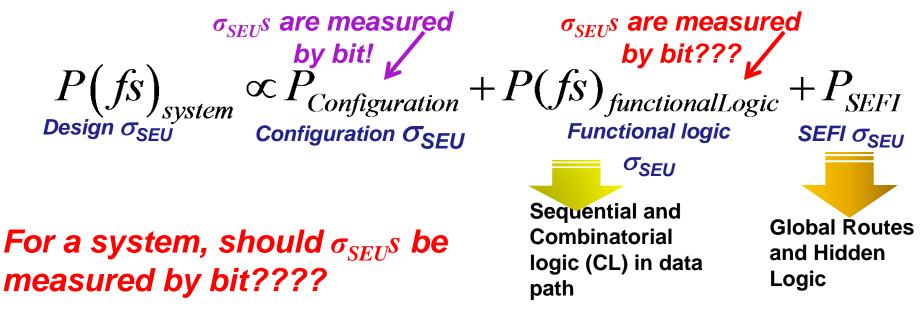
Acronyms

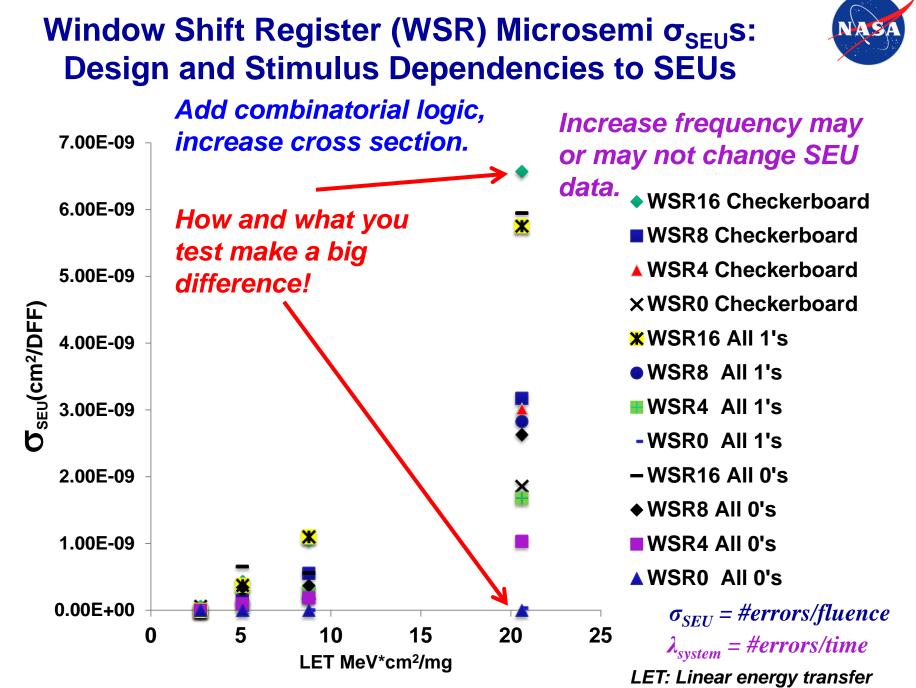
- Combinatorial logic (CL)
- Commercial off the shelf (COTS)
- Complementary metal-oxide semiconductor (CMOS)
- Device under test (DUT)
- Edge-triggered flip-flops (DFFs)
- Electronic design automation (EDA)
- Error rate (λ)
- Error rate per bit(λ_{bit})
- Error rate per system(λ_{system})
- Field programmable gate array (FPGA)
- Global triple modular redundancy (GTMR)
- Hardware description language (HDL)
- Input output (I/O)
- Intellectual Property (IP)
- Linear energy transfer (LET)
- Mean fluence to failure (MFTF)
- Mean time to failure (MTTF)
- Number of used bits (#Usedbits)
- Operational frequency (fs)
- Personal Computer (PC)

- Probability of configuration upsets (P_{configuration})
- Probability of Functional Logic upsets (P_{functionalLogic})
- Probability of single event functional interrupt (P_{SEFI})
- Probability of system failure (P_{system})
- Processor (PC)
- Radiation Effects and Analysis Group (REAG)
- Reliability over time (R(t))
- Reliability over fluence (R(Φ))
- Single event effect (SEE)
- Single event functional interrupt (SEFI)
- Single event latch-up (SEL)
- Single event transient (SET)
- Single event upset (SEU)
- Single event upset cross-section (σ_{SEU})
- System on a chip (SoC)
- Windowed Shift Register (WSR)
- Xilinx Virtex 5 field programmable gate array (V5)
- Xilinx Virtex 5 field programmable gate array radiation hardened (V5QV)

Problem Statement and Abstract

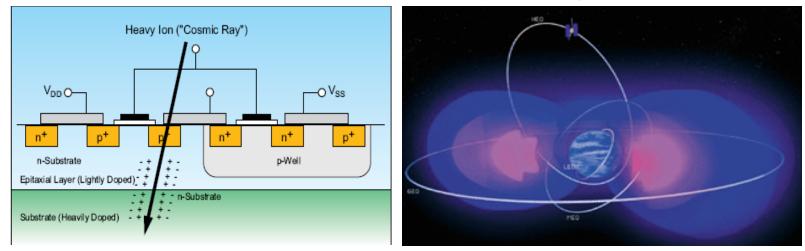
- The process for application of single event upset (SEU) data used to characterize system performance in radiation environments needs improvement.
- We are investigating the application of classical reliability performance metrics combined with standard SEU analysis data to improve system survivability prediction.


This presentation is a simplified approach for SEU data extrapolation to complex systems. Future work will incorporate additional details.


Background (1) : FPGA SEU Susceptibility

SEU Cross Section (σ_{SEU})

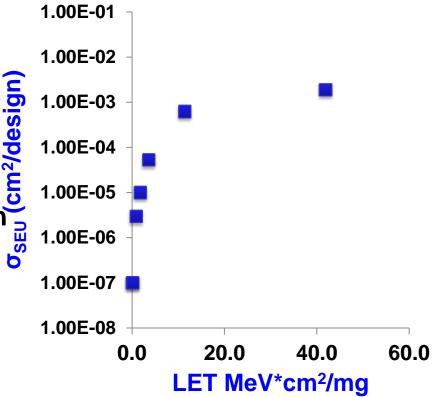
- σ_{SEU} s (per category) are calculated from SEU test and analysis.
- σ_{SEU} s are calculated per particle linear energy transfer (LET).
- Most believe the dominant σ_{SEU}s are per bit (configuration or flipflops (DFFs)). However, global routes are significant (more than DFFs).



Presented by Melanie Berg at the Microelectronics Reliability & Qualification Working Meeting (MRQW), El Segundo, CA February 6-7, 2018

Background (2) Conventional Conversion of SEU Cross-Sections To Error Rates for Complex Systems Next Step

- **Bottom-Up approach (transistor level)**:
 - Given σ_{SEU} (per bit) use an error rate calculator (such as CRÈME96) to obtain an error rate per bit (λ_{bit}).
 - Multiply λ_{bit} by the number of used memory bits (#UsedBits) in the target design to attain a system error rate (λ_{system}). Configuration and DFFs.
- Top-Down approach (system level):
 - Given σ_{SEU} (per system) use an error rate calculator (such as CRÈME96) to obtain an error rate per bit (λ_{system}).



Presented by Melanie Berg at the Microelectronics Reliability & Qualification Working Meeting (MRQW), El Segundo, CA February 6-7, 2018

Technical Problems with Current Methods of Error Rate Calculation

- For submission to CRÈME96, σ_{SEU} data (in Log-linear form) are fitted to a Weibull curve.
 - During the curve fitting process, a large amount of error can be introduced.
 - Consequently, it is possible for resultant error rates (for the same design) to vary by decades.
- Because of the error rate calculation process, σ_{SEU} data are blended together and it is nearly impossible to hone in on the problem spots. This can become important for mitigation insertion.

Technical Problems with Bottom-Up Analysis Method

- Multiplying each bit within a design by λ_{bit} is not an efficient method of system error rate prediction.
 - Works well with memory structures... but...complex systems do not operate or respond like memories.
 - If an SEU affects a bit, and the bit is either inactive, disabled, or masked, a system malfunction might not occur.
 - Using the same multiplication factor across DFFs will produce extreme over-estimates.

 $\lambda_{system} < \lambda_{bit} \times \#UsedBits$

Let's Not Reinvent The Wheel... A Proven Solution Can Be Found in Classical Reliability System-Level Analysis

assumes that during useful-lifetime: Failures are independent. $R(t)=e^{-t/MTTF}$ or $R(t)=e^{-\lambda t}$ Weibull slope = 1... exponential.

The exponential model that relates reliability to MTTF

Mapping Classical Reliability Models from

The Time Domain To The Fluence Domain

- Error rate is constant.
- MTTF = $1/\lambda$.
- For a given LET (across fluence):
 - SEUs are independent.
 - σ_{SEU} is constant.
 - MFTF = $1/\sigma_{SEU}$.
- Hence, mapping from the time domain to the fluence domain (per LET) is straight forward:
 - $t \Leftrightarrow \Phi$
 - MTTF ⇔ MFTF

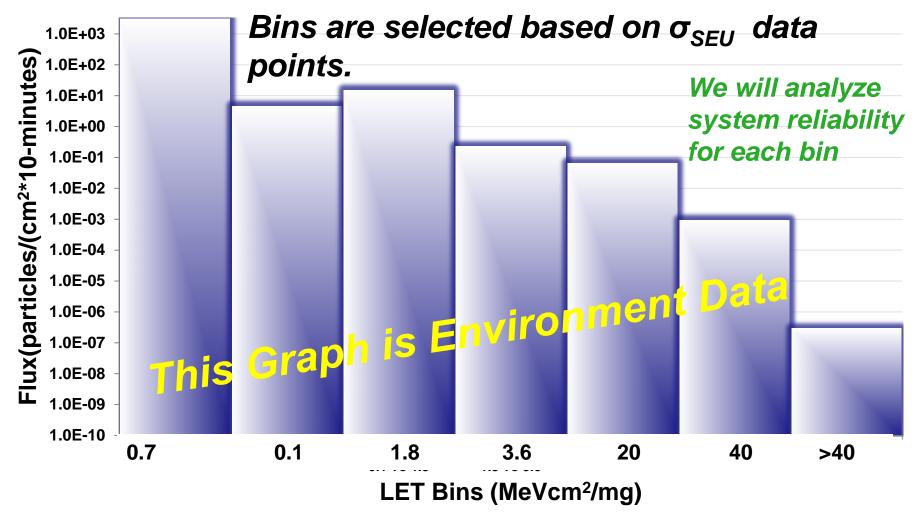
 $-\lambda \Leftrightarrow \sigma_{SEU}$

 $K(t) = e^{-t/MTTF}$

Parallel between time and fluence.

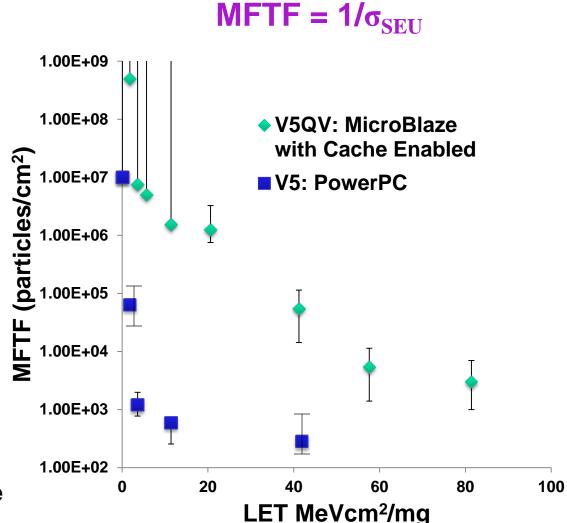
 $\sigma_{SEU} = #errors/fluence$ $\lambda_{system} = #errors/time$

$$(\Phi) = e^{-\Phi/MFTF}$$


Example of Proposed Methodology Application

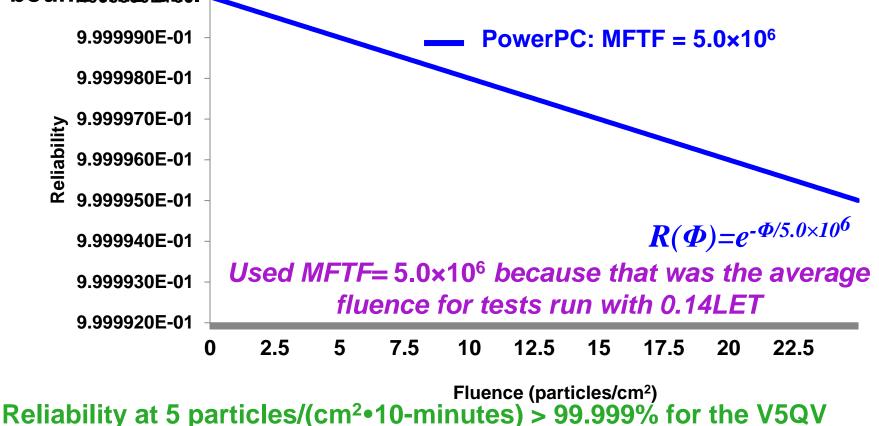
- Mission requirements:
 - Selection shall be made between a Xilinx V5QV (relatively expensive device) or a Xilinx V5 with embedded PowerPC (relatively cheap device).
 - FPGA operation shall have reliability of 3-nines (99.9%) within a 10 minute window at Geosynchronous Equatorial Orbit (GEO).
- Proposed methodology:
 - Create a histogram of particle flux versus LET for a 10minute window of time for your target environment.
 - Calculate MFTF per LET (obtain SEU data).
 - Graph R(Φ) for a variety of LET values and their associated MFTFs. R(Φ)=e^{- Φ /MFTF}
 - For selected ranges of LETs, use an upper bound of particle flux (number of particles/cm²•10-minutes), to determine if the system will meet the mission's reliability requirements.

Environment Data: Flux versus LET Histogram for A 10-minute Window


Geosynchronous Equatorial Orbit (GEO) 100-mils shielding

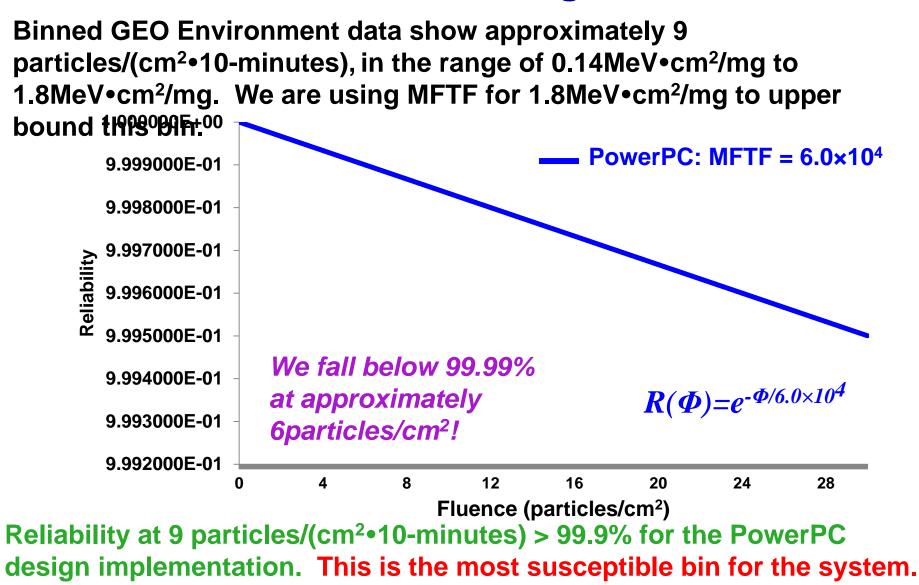

MFTF versus LET for the Xilinx V5 Embedded PowerPC Core and the Xilinx V5QV MicroBlaze Soft Processor Core

- V5QV: no system errors were observed below LET=1.8 MeV•cm²/mg. Total fluence > 5.0×10⁸ particles/cm².
- PowerPC:
 - No system errors were observed below LET=0.07MeV•cm²/mg with total fluence = 3.×10⁷ particles/cm².
 - Hence, at 0.07, we will assume an upper-bound MFTF = 3.0×10⁷ particles/cm².
 - More tests would increase the MFTF for this bin.


Reliability across Fluence up to LET=0.07MeV•cm²/mg

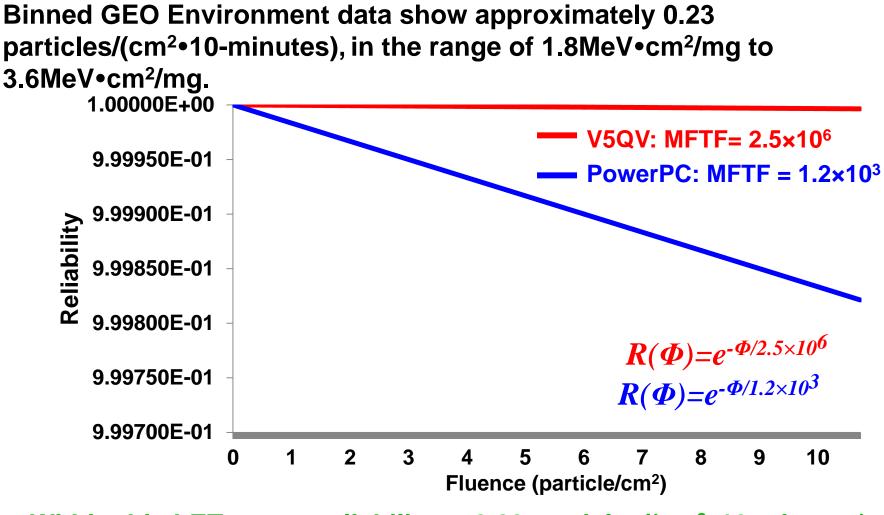
Reliability across Fluence up to LET=0.14MeV•cm²/mg

particles/(cm²•10-minutes), in the range of 0.07MeV•cm²/mg to 0.14MeV•cm²/mg. We are using MFTF for 0.14MeV•cm²/mg to upper bound this tim.



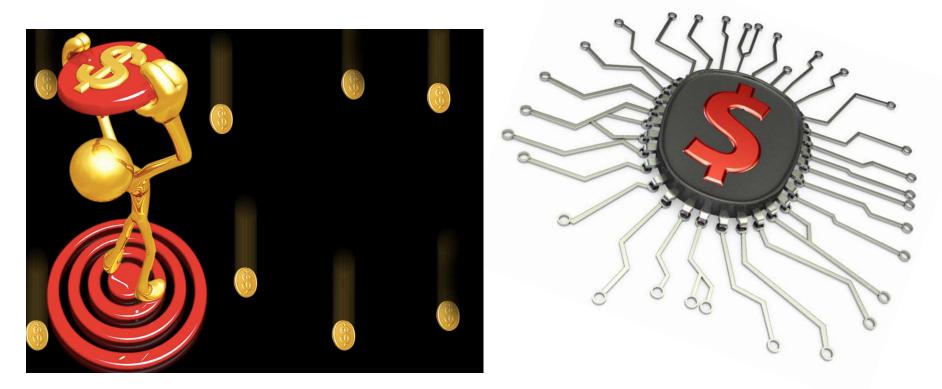
PowerPC design implementation.

Presented by Melanie Berg at the Microelectronics Reliability & Qualification Working Meeting (MRQW), El Segundo, CA February 6-7, 2018


Reliability across Fluence up to LET=1.8 MeV•cm²/mg

Reliability across Fluence up to LET=3.6MeV•cm²/mg

Within this LET range, reliability at 0.23 particles/(cm²•10-minutes) > 99.999% for both design implementations.


Reliability across Fluence at LET=40MeVcm²/mg Binned GEO environment data show approximately 0.07 particles/(cm²•10-minutes), in the range of 3.6MeV•cm²/mg to 40.0MeV•cm²/mg. 0.9999 V5QV: MFTF= 2×10⁴ PowerPC: MFTF = 2.8×10^2 0.9998 Reliability 0.9997 0.9996 We fall below 99.99% $R(\Phi) = e^{-\Phi/2.0 \times 10^4}$ $R(\Phi) = e^{-\Phi/2.8 \times 10^2}$ at approximately 0.9995 0.02particles/cm²! 0.9994 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Fluence (particle/cm²)

Within this LET range, reliability at 0.07 particles/(cm²•10-minutes) > 99.9% for both design implementations. We can refine by analyzing smaller bins.

Example Conclusion

- Using the proposed methodology, the commercial Xilinx V5 device will meet project requirements.
- In this case, the project is able to save money by selecting the significantly cheaper FPGA device and gain performance because of the embedded PowerPC.

Conclusions

- This study transforms proven classical reliability models into the SEU particle fluence domain. The intent is to better characterize SEU responses for complex systems.
- The method for reliability-model application is as follows:
 - SEU data are obtained as MFTF.
 - Reliability curves (in the fluence domain) are calculated using MFTF; and are analyzed with a piecemeal approach.
 - Environment data are then used to determine particle flux exposure within required windows of mission operation.
- The proposed method does not rely on data-fitting and hence removes a significant source of error.
- The proposed method provides information for highly SEUsusceptible scenarios; hence enables a better choice of mitigation strategy.
- This is preliminary work. There is more to come regarding environment data transformation.

This methodology expresses SEU behavior and response in terms that missions understand via classical reliability metrics.

Acknowledgements

- Some of this work has been sponsored by the NASA Electronic Parts and Packaging (NEPP).
- Thanks is given to the NASA Goddard Radiation Effects and Analysis Group (REAG) for their technical assistance and support. REAG is led by Kenneth LaBel and Jonathan Pellish.

Contact Information:

Melanie Berg: NASA Goddard REAG FPGA Principal Investigator: Melanie.D.Berg@NASA.GOV