

Microelectronics Research Development Corporation

4775 Centennial Blvd. Suite #130 Colorado Spring, CO 80919 719-531-0805

8102 Menaul Blvd. NE, Suites A, C, & D Albuquerque, NM 87110 505-294-1962

2491 NE Twin Knolls Drive, Suite #106 Bend, OR 97701 541-382-9500

Micro-RDC

Employee Owned Small Business

- 27 Employees
 - 21 Technical
 - 6 Administrative
- Three Offices
 - Colorado Springs, CO
 - Albuquerque, NM
 - Bend, OR

Organizational Structure

- Radiation Effects Research and Development
- Radiation Test Services
- Design Services
- "Product" Development

Technology Characterization

Mitigation Approaches

Radiation Effects on New Technologies

- Total Ionizing Dose
- Single Event Effects Latch-Up, Upsets, Transients
- Prompt Dose/Dose Rate Latch-Up, Upsets

Mitigation Approaches

- Simulation
- Transistor Design
- Circuit Design
- Engineered Substrates

Characterization Test Vehicles - Transistors

- Simple diode gate protection for probing
- ARACOR TID testing

Characterization Test Vehicles - Circuits

Model Development and Simulation

- **Collection dynamics must be established by circuit response**
 - Currents must decrease as voltages collapse (reduced E fields)
 - Pulse broadening will occur naturally (longer times will be needed to clear a fixed charge from the substrate)
- □ New SPICE model reflects these dynamics
 - Equivalent Collection Model (ECM) designed to capture the effects of node voltage collapse
 - Variational calculus to solve integral equation with variable limits:

Solve for I(t):
$$\int_0^{t(s)} I(t') dt' = Q(s)$$
, given $Q(s = \infty)$

- Note that I(t) is implicitly defined from an integral whose limit of integration varies according to the circuit response
- Recombination / diffusion included by damping Q(s) as function of time
- Boundary condition Q(s=∞) likely dependent of V_{dd}
- Implement solely with standard SPICE elements

Design Hardening

- Abutted substrate contacts on transistor sources provide recombination
- Gate isolated reverse biased junctions near critical nodes provide hard rail collection diodes

Circuit Design

- Data latch SEU/SET mitigation
 - Temporal sampling to achieve both spatial and time redundancy
 - Variable sampling delay for hardness / performance tradeoff
 - Immune to multiple node strikes and transients on any node
 - Self scrubbing, does not integrate errors as normal TMR

- **SRAM SEU mitigation**
 - Conventional 4T storage with dual-port PMOS access
 - EDAC for single bit errors
 - Scrubbing to reduce multiple bit errors

Substrate Engineering

- New method under investigation
 - Electric field induced inversion layer in place of HDBL
 - Can be located much closer to surface
 - Can remove charge through drift, rather than through diffusion and recombination
- Attractive for a number of reasons
 - Uses standard CMOS processing
 - Requires no mask changes
 - Requires no process modifications

Radiation Effects Research and Development

Engineered Substrates

- Develop test methods to characterize
 - Lateral diffusion
 - Digital SET pulse widths
 - Upset threshold LETs
 - Latchup
 - Dose-rate charge collection
 - Design and layout reusable test chip suite (in order of attack)
 - SRAM with various critical node separations
 - Digital SET shift registers retargeted to Jazz 180 nm
 - Transient propagation circuits
 - Diffusion, latchup, photo-diode, photo-transistor structures
 - Basic transistors to monitor device parametric parameters
- **Support design and development with 3d-device simulations**
 - CFDRC

Figure 1. Layout of the entire test chip

Radiation Test Services

Technology Characterization

Total Ionizing Dose

Single Event Effects

Prompt Dose

- Follow Mil Std 883 Practices
- Total Ionizing Dose
- Single Event Effects
 - Latch-up
 - Upset
 - Transients
- Dose Rate/Prompt Dose
 - Latch-up
 - Upset
- Enhanced Low Dose Rate Effects (ELDRS)

Radiation Test Services

Facilities

- AFRL Cobalt 60, LEXR, Cesium, and Flash X-Ray
- Longmire Laboratory
- Berkeley Cyclotron
- Texas A&M Cyclotron
- Brookhaven National Lab Tandem Van de Graaff
- Indiana University Cyclotron
- Etc.

Variable Delay Temporal Latch

- **C** Shift register immune to upset if transient width $< \Delta T$ filtering delay
- □ Vary △T with current starved delay chain
- **D** Measure error cross section as function of ΔT

Least-Squares Fit Data Analysis

- □ Mathematical statement of the problem
 - Data: $y_i \pm \sigma_i, i = 1, n$
 - Parameters: a_j , j = 1, m
 - **Function:** $y(x_i, \vec{a}), x_i = independent variables$
 - Minimize Chi-Squared of the fit to the data: $X^2 = \sum_{i=1}^{n} \frac{1}{\sigma^2} [y_i y(x_i, \vec{a})]^2$
 - Solve: $\frac{dX^2}{da_i} = 0, \quad j = 1,m$
- Generic least squares fitting method
 - Linearize: $\vec{\beta} = \delta \vec{a} \cdot [\alpha]$
 - Iterate: $\vec{a} \to \vec{a} + \delta \vec{a}$, where $\delta \vec{a} = \vec{\beta} \cdot [\varepsilon]$ and $[\varepsilon] = [\alpha]^{-1}$

$$\beta_{k} = \sum_{i} \frac{1}{\sigma_{i}^{2}} [y_{i} - y(x_{i}, \vec{a})] \frac{\partial y_{i}}{\partial a_{k}} \qquad \qquad \alpha_{jk} = \sum_{i} \frac{1}{\sigma_{i}^{2}} \frac{\partial y_{i}}{\partial a_{j}} \frac{\partial y_{i}}{\partial a_{k}}$$

- \rightarrow Best fit parameters a_j that minimize X^2
- \rightarrow Parameter uncertainties $\Delta a_j = \sqrt{\varepsilon_{jj}}$ that reflect the data uncertainties

Typical ELDRS Data

AD590 average change in °C vs. dose for high and low dose rate irradiation at two biases

Radiation Test Services

Test Hardware

- FPGA Test Board
 - Standard test platform
 - Custom daughter card
 - Leverage existing code
 - Used for multiple tests

Custom ASIC Development

Circuit Design

System Design

High Density Packaging

- Research and Design of Integrated Circuits
 - In-house CAD tools
 - PC Based Design, Layout, and Simulation
 - Access to advanced CAD tools via AFRL SEAMS center
 - Workstation Based Design, Layout, and Simulation
 - Foundry Flexible
- **Circuit Design for Responsive Space**
 - SPA-U/S
 - ASIMs
 - Flex Circuit Module
- Advanced Packaging
 - Multi-Chip Modules
 - Chip-on-Board

Design Services

Memory Development

Design Services

IO Development Level Shift and Control **IO Pad Pitch is 64 microns Staggered Pad Layout** Secondary ESD Diodes **Effective Staggered Pad Pitch Output NFETs** is 32 microns Annular Gates for All NFET's and PFET's Output PFETs Primary ESD Diodes Pad Opening is 52 microns

Micro-RDC Capabilities

Design Services

Responsive Space Design Support

Key AT Technologies

- eFuses
 - Must be only destructively readable (i.e. damaging the component).
 - Antifuses and other programmable ROMs possible.
- □ Key Structures that disintegrate upon known reverse engineering efforts.
 - Key focus: Apply in-depth understanding of nano-scale IC technology to effectively prevent reverse engineering of critical keys.
- Ciphers
 - Maximal Length Linear Feedback Shift Registers (LFSRs)
 - Sufficiently large N or effectively large N required for sufficient entropy.
 - Complex LFSR-based scramblers that obfuscate tap sequences.
 - Other, included Blowfish, Twofish, and other Block Ciphers
- Cost-effective NVRAM
 - Ability to determine that a series of unauthorized attempts have been made to determine stored keys.
 - NVRAM (after several attempts) completely locks part out forever.
- Automation Tool Flow enhancements
- RHBD Techniques

"Product" Development

Structured ASIC

Structured ASIC Goals

- Current Options for Radiation Hardened Parts
 - Custom/Standard Cell ASIC Design
 - Rad-Hard by Process Foundry
- RHBD on Structured ASIC
 - Use radiation hardening by design (Micro-RDC)
 - Leverage commercial foundry
 - Leverage commercial structured ASIC
 - Existing Architecture (ViASIC ViaMask)
 - Existing Tool Set (ViASIC ViaPath)
 - Reduce design cycle
 - Reduce fabrication cost

Provide Rad-Hard Devices in Timely Manner at Reasonable Cost

Micro-RDC Capabilities

"Product" Development

Structrued ASIC Chip Size and Features						
Chip	Size (mm²)	Macros	Memory (bits)		Logic	
			Embedded	Block	(Equivalent Gates)	Ю
Large	187.56	SERDES, PLL/DLL	1828710	?	2532060	LVDS, CMOS ~330 Regular ~600 Staggered
Medium	92.95	SERDES, PLL/DLL	906227	?	1254776	LVDS, CMOS ~200 Regular ~375 Staggered
Small	22.47	None	219077	None	303337	LVDS, CMOS ~120 Regular ~200 Staggered
X-Small	4.85	None	47334	None	65540	CMOS ~50 Regular

- Block Memory: ~15mm² per Mbit
- SERDES: 1.125 GHz Physical Layer Only
- PLL/DLL: 100MHz 1.25GHz
- LVDS IO: Number of transceiver pairs is TBD.
- CMOS IO: 2.5V standard input, output, bi-direct, etc.

Roadmap SASIC SASIC SASIC Test Demo 90nm Bulk Rev 1 Rev 2 Rev 3 Chip Chip ViaPath SASIC SASIC Tool 65nm Bulk Demo 10 Rev 4 Rev 5 Update - i Improved SERDES Technology Porting Analog SASIC SASIC SOI 45nm SOI Rev 6 Rev 7 Demo SOI R&D SASIC SASIC ViaPath 32nm SOI Demo Tool Rev 8 Rev 9 10 Technology SERDES Porting Analog 13 16 07 80 09 10 11 12 14 15 17 18 19

Micro-RDC Capabilities

"Product" Development

Summary

- Tightly held employee owned company
- Leaders in Radiation Effects
 - Research, Mitigation, Test, and Data Analysis
- Single Event Transient Pioneers
- Developing Broad-based Test Capability
- Design Capability
 - IC's, Circuits, Systems
- Leveraging R&D Into "Products"
 - Structured ASIC