The LEON3 processor and SpaceWire Codec and their Application

Sandi Habinc, Jiri Gaisler

Military and Aerospace FPGA and Applications (MAFA) Meeting

Palm Beach

2007-11-29
Outline

- Enabling technologies
- LEON3-FT
- SpaceWire and RMAP
- Devices and systems
- Applications
 - BELA (DLR, Germany)
 - SIR2 (University of Bergen, Norway)
 - Prisma (SSC, Sweden)
 - ARGO (Taiwan)
 - TacSat-4
- Conclusions
Enabling technologies

The following enabling technologies allow the development of advanced FPGA and ASIC System-on-a-Chip designs for on-board application at an unprecedented rate:

- **SPARC 32-bit RISC architecture:**
 - standardized instruction set portable between processor generations: e.g. ERC32, LEON2/3/4

- **Debug Support Unit:**
 - instruction and on-chip bus tracing
 - Debug Link UART: remote read/write

- **AMBA AHB/APB on-chip buses & PnP**

- **SpaceWire link with RMAP**
The LEON3-FT IP core set

- The LEON3-FT is an advanced fault-tolerant 32-bit processor integer unit implementing the SPARC V8 standard instruction set.
- The GRFPU-FT is a fault-tolerant IEEE-754 compliant fully pipelined floating point unit supporting single and double precision (32- and 64-bit floats) data formats.
- The MMU-FT is a fault-tolerant SPARC V8 reference memory management unit with a translation look-aside buffer (TLB).
- Test silicon available since 2005 (250 nm and 180 nm).
LEON status

- LEON independently certified by Sparc International
- Verified for space use according to the stringent requirements of the European Space Agency (ESA)
- Used as reference design in the UMC low power design package
- Used as reference design by major tool vendors (Synopsis, Synplicity, Mentor, Spirit)
- Promoted by Cadence through the Open-Choice programme
- Partnership with Aldec for VHDL simulation
- Partnership with Actel for military / space applications
SpaceWire and RMAP

- High-speed data link serial interface with Data-Strobe encoding (2 Mbit/s – 400 Mbit/s)
- Point-to-point, uses routers
- SpaceWire standard is based on IEEE-Std-1355 (DS-Link from Inmos)
- ECSS-E-50-12A standard for space
- Remote Memory Access Protocol (RMAP):
 - Allows remote read and write
 - Single byte, half-word, word or burst
 - Verified write
 - Read-modify-write
 - No support required from CPU on receiving side
GRSPW: SpaceWire and RMAP

Diagram:
- Transmitter
- LinkInterface FSM
- Receiver
- RxClock Recovery
- RxClock
- TxClk

Clock Domains:
- Tx clock domain
- Rx clock domain
- AHB clock domain

Connections:
- Data Parallelization
- Send FSM
- Transmitter FIFO
- RMAP Transmitter
- RMAP Receiver
- Receiver FIFO
- DMA Engine
- Registers
- APB Interface

Interfaces:
- AHB Master Interface
- APB Interface
- HPI Interface
- AHBM Interface
- RMAP Interface
GRSPW - Characteristics

- Supports AMBA AHB with high throughput
- Supports full RMAP
- Fault-tolerant version /w memory protection
- Portable between technologies and tools: Xilinx, Actel and ASIC
- Small footprint on Actel (Companion Core)
- RTEMS and VxWorks drivers available

<table>
<thead>
<tr>
<th>Core configuration</th>
<th>RTAX2000S-1</th>
<th>ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRSPW</td>
<td>2,800 / 2 / 40 / 100</td>
<td>10,000 gates</td>
</tr>
<tr>
<td>GRSPW + RMAP</td>
<td>3,600 / 2 / 40 / 100</td>
<td>15,000 gates</td>
</tr>
<tr>
<td>GRSPW-FT</td>
<td>2,900 / 4 / 40 / 100</td>
<td>11,000 gates</td>
</tr>
<tr>
<td>GRSPW-FT + RMAP</td>
<td>3,700 / 4 / 40 / 100</td>
<td>16,000 gates</td>
</tr>
</tbody>
</table>
Devices and Deliverables

- **Devices**
 - LEON3-RTAX – Actel FPGA
 - GR701 - Companion Chip – Actel FPGA
 - UT699RH – Aeroflex
 - GR-RASTA – Xilinx FPGA based prototyping

- **Different type of deliverables to customers:**
 - LEON3FT / GRLIB-FT VHDL/EDIF netlists
 - LEON3FT-RTAX programming files
 - LEON3FT-RTAX devices
LEON3-RTAX, Actel RTAX2000S

LEON3-RTAX is a LEON3-FT implemented using Actel RTAX2000S FPGA devices

Characteristics:
- Actel RTAX2000S -1
- CCGA624 or CQFP352
- 20-25 MHz system frequency, 33 MHz PCI
- Up to 100 MBPS SpaceWire

Delivery:
- Programmed component
- Programming file
- Individual IP core netlists (supports Actel Libero design flow)
- Prototyping using commercial FBG896 parts with adapter

Several systems already shipped
LEON3-RTAX, Architecture
LEON3-RTAX, Configurations

<table>
<thead>
<tr>
<th>Configuration name</th>
<th>Instrument Controller-1</th>
<th>Instrument Controller-2</th>
<th>Spacecraft Controller-1</th>
<th>Spacecraft Controller-2</th>
<th>Spacecraft Controller-3</th>
<th>Spacecraft Controller-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration ID (CID)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>LEON3FT Integer Unit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hardware multiply&divide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Power down mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Memory Management Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Floating Point Unit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debug Support Unit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UART Debug Link</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>JTAG Debug Link</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>On-Chip Memory</td>
<td>4 kbytes</td>
<td>2 kbytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1553 RT</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1553 BC/RT/MT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpaceWire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 2.0B</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Initiator/Target/Arbit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Ethernet MAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Memory Controller</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SDRAM Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Standard peripherals</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Package</td>
<td>CQFP352</td>
<td>CQFP352</td>
<td>CQFP352</td>
<td>CCGA624</td>
<td>CCGA624</td>
<td>CCGA624</td>
</tr>
</tbody>
</table>
LEON3-RTAX, GR-CPCI-AX2000
GR701 - Companion Chip

PCI based companion chip implemented on RTAX2000S:
- PCI @ 33 MHz (Actel)
- 1553 @ 24 MHz (Actel)
- SpaceWire @ 100 MHz
- CAN @ 1 MHz
GRESB - Ethernet SpaceWire Bridge

Ethernet to SpaceWire bridge (with CAN 2.0)
Supports multiple links, routing and RMAP
IP tunnelling and web interface
Xilinx Spartan-3 FPGA
LEON3 inside
Linux based
Debugging with GR701
The **GR-RASTA LEON2/3 Development System** is a PCI based set of processor and interface boards aimed towards the development of avionics.

A rich variety of compact PCI boards provides a large number of variations:

- **Processors:** LEON3, LEON2, AT697, SPW-RTC
- **Buses:** SpaceWire, Mil-Std-1553, CAN, Ethernet
- **Peripherals:** PCI, UART, JTAG, GPIO, Timers
- **Memories:** SRAM, SDRAM, FLASH PROM
- **Spacecraft communication:** CCSDS/ECSS TM/TC

Boards support ASIC, Actel and Xilinx FPGAs
GR-RASTA CPCI Crate
Applications - BELA

- Bepi-Colombo Laser Altimeter (BELA)
- DLR (Germany)
- LEON3-FT delivered as VHDL netlist
- Bepi-Colombo, ESA’s mission to Mercury
- Mercury Planetary Orbiter (MPO)
- Launch 2013
- In orbit 2019 -
Applications – SIR2

- SIR-2 instrument is a highly compact, monolithic grating, near infrared spectrometer
- Chandrayaan-1, India’s mission to the moon
- University of Bergen, Norway
- LEON3-FT delivered as VHDL netlist
- MIL-STD-1553B wrapper for ACTEL core
- GRLIB used
- Launch 2008
Applications – SIR2
Swedish/German technology mission to demonstrate different technologies and guidance/navigation strategies for Rendezvous and Formation Flying in space.

- Autonomous formation flying
- Homing
- Rendezvous
- Proximity Operations
- Final Approach
- Recede Operation
- Launch 2009
Applications - PRISMA

- Spacecraft control computer based on standard LEON3-RTAX design
- LEON3-FT delivered as a VHDL netlist
- GRLIB based design
- Customer added own IP cores
- Gaisler Research developed AMBA interface:
 - SpaceWire interface, single port
 - CAN interface, redundant ports
- 24 MHz system frequency (due to CAN)
- RTAX2000S parts to be programmed shortly
Applications - ARGO

- ARGO, Remote Sensing mission
- Taiwan National Space Organization (NSPO)
- Spacecraft control computer based on standard LEON3-RTAX design:
 - SpaceWire links
 - Std peripherals
- ACER Inc. (Taiwan)
- Carlo Gavazzi Space (I)
- RapidEye constellation
- Launch 2009
Applications – TacSat-4

- Operationally Responsive Space (ORS)
- TacSat-4 SpaceWire link has two nodes:
 - Payload Data Handler (PDH) on spacecraft bus
 - Universal Interface Electronics (UIE) on payload
 - Connected by SpaceWire cables
- The UIE employ the Gaisler Research LEON3 processor and SpaceWire core in an Actel RTAX2000S FPGA
- Jaffe et al. ISC 2007
Applications – Others

- **LEON3-RTAX:**
 - Assurance Technology Corporation (US)
 - Syderal SA (Switzerland)
 - Tubitak Uzay (Turkey)
 - INTA – INTAμSat (Spain) (tentative)

- **LEON3 / LEON3-FT:**
 - EADS Astrium (France)
 - Ball Aerospace (US)
 - Microsat Systems Inc (US)
 - Orbital Research Inc (US)
 - General Dynamics AIS (US)
 - Zarlink Semiconductor (Canada)
 - Vineyard Technologies (US)
Conclusions

- By embracing the enabling technologies presented, several powerful system-on-a-chip designs have been developed in a short period of time.
- The key factors have been efficient implementation of truly re-usable IP cores, such as the GRSPW SpaceWire codec, which have been designed with interoperability and portability in mind from the start.
- This has resulted in sophisticated flight products that are being shipped to customers right now.