

Use of FPGAs For Radiation Testing

MAFA November 28, 2007

Paul Eaton Micro-RDC 8102 Menaul Blvd. NE, Suites C&D Albuquerque, NM 87110 505-294-1962

SEE Testing With FPGAs

Micro-RDC FPGA uses

- Heavy ion testing
- Prompt dose testing
- Laser testing
- Total dose testing
- □ There are many others as well
 - Actel
 - Xilinx
 - LANL
 - NASA
 - Others

Original ECL Digital Single Event Transient Board

- **Early ECL board design**
 - Specific design to each test chip
 - High-speed test clock, low-speed interface clock
 - Experiment relied on the errordetection circuitry built into the test chip
 - New board was required for each new test chip design
 - Time consuming and costly

FPGA Test System Concepts

Speed

 Move the test system (FPGA) as close to the device under test (DUT) as possible

Cost

 Make the board as flexible as possible, minimize the re-design necessary for a variety of DUTs

Re-Use

- VHDL code
- Coding style for portability
 - Build using most generic constructs
 - Some modules still used on the Virtex-5 board were first built on the Virtex-2 board
 - Isolate special FPGA component usage into separate modules

FPGA Testing Block Diagram

Virtex 2 DSET Board

- Upgrade from ECL board
 - RS232 interface
 - National Instruments DIO-32 connector
 - Adjustable voltage interface to the FPGA pins
 - "Generic" socket definition
 - Pwr/Gnd had to be defined
 - 84-pin LCC socket
 - Daughter card connectors
 - Daughter card mounts over the sockets
 - Daughter card with ribbon cables used for experiments requiring the FPGA to be shielded

Spartan-3 DSET Board

System designed around Xilinx Spartan-3 FPGA

Maintains compatibility with previous Virtex-2 DSET system

 Pinout from 84-pin LCC socket maintained

□Use of new low-impedance interconnect technology for high speed testing

■New higher speed daughter card connections

 Daughter card connections based on NASA Spartan-3 board design

■Main upgrades

- Faster test capability
- Lower VDD on I/Os to test device

New Virtex-5 DSET Board

- **Upgrade from Spartan-3 to V5**
 - Higher logic density
 - Xilinx recommends 64-bit Linux PC with 2 GB of RAM
 - More I/O (560 user I/O)
 - Completely separate I/O to particle interconnect and daughtercard
- New board components
 - Level shifting transceivers for under 1.0V I/O requirements
 - USB interface module
 - Faster communication/data
 transfer rates
 - Programmable clock IC
 - Up to 700 MHz

Spartan-3 4-LUT

4-Input Look-up tables

Synplify Pro 8.8.0.4 - Dec 7 2006 - [Sheet 1 of	1 - U_ES_CDC_main_statemachine (of module ES_CDC_main_statemachine) (Technology View) SPARTAN3: XC3S1500FG676]
Eile Edit View Project Run Analysis HDL-Analyst Q	ptions Window Tech-Support Web Help _ 문
ျိုး P 🟠 🗒 🖽 🍃 🖬 🎒 🖉 🛱 🛍 သည္ ျ	▲夏 😁 🕒 🗗 🗑 徐 🖛 → 魚 魚 魚 魚 🏞 🛊 🗰 🔤 💷 📐 ※ 洗糸
+ : []: ctrl[1] (FDR)	
+ 1 ctrl[3] (FDRS)	LUT3_E6
+ :: ctrl[4] (FDR)	101 LUT4_L_F35F
+: ctrl_ns_0_0_0[5] (LUT4	
+ 1: ctrl_ns_0_0_0[5] (LU	
+ 1 ctrl ns 0 0 0 3[5] (LU"	ct1 ns 0 i 0 i 0 m11 0/0
+ :: ctrl_ns_0_0_a2_0[5] (
+ :[]: ctrl_ns_0_0_0_a2_4[5] (
	LUT3 L 20 ctrl ns 0 i 0 i 0 501
+ 1; ctrins_0_0_a2_6[5](
+ {]; ctrl_ns_0_0_0_02[5] (LL S	
+ : ctrl_ns_0_0_02_0[5] (
+ :[]: ctrl_ns_0_0_0_02_2[5] (
+ 1: ctrl_ns_0_0_a2_0_1[2	$\operatorname{ctrl_ns_0_i_0_i_0_o11[d]}^{ctrl_ns_0_i_0_i_0_i_0_i_0_i_0_i_0_i_0_i_0_i_0_$
+ 1; ctrins 0 0 i o2 1/2/(
+ : []: ctrl_ns_0_i_0[i](LU	
	LUT4_308B LUT4_0111
+ 1; ctr_ns_00_1_0_4[0](
+ 1: ctrl_ns_000[0] (
+ : ctrl_ns_0_i_0_i_0_a11_	
	ctrl_ns_0_i_0_i_0_4[0] ctrl_ns_0_i_0_i_0[0] Ltrl_ns_0_i_0_i_0[0]
+ {]: ctrl_ns_0i_0i_0_m11_	
+ 1: ctrins 0 i 0 i 0 o11[[-	ctrl_ns_0_i_0_i_0_4_1[0]
JAZZ_CDC :D ES_CDC_P	
×I	X La Desender and A real data t
1004 warnings, 108 notes	Find: Set Fiter C Apply Filter Group Common ID's
Type ID Message	Source Location Log Location Time Report
A 05 CI 100 Devoice Devices CNTD DI	CECET U CC CAN DATION I HANDAN MAI Conseder
TCL Script Messages	
Net nSCLR_i (local net nSCLR_i) local_fanout =6	

Virtex-5 6-LUT

6-Input look-up tables

eet 1 of 1 - U_TIGER_PDTRL_r	232rx (of module rs232rx) (Technology V	iew) VIRTEX5: XC5VLX30FF67	5-3/rev_2/ES_CDC_PDT]		
nalyst Options Window Tech-Suppo	rt We <u>b</u> Help				_ & ×
⊇ ⊇ M 💭 😁]⊕ Ð I	■ 示 🖩 🛛 💆 特 🖛 ⇒ 🔎 🏓 🏓 🔎	≫ t∔ ∉ 🕸			
					UUT5_1_D0FA6072
19 5					
			LUT6_400A4002000A0002	U.Ctrl.ctrl_135_7_0_m148_0_0_0_0	×

(Pre)-Test Checklist

- **Given Series of Series and Serie**
 - What new software needs to be designed
 - Physical facility information
 - Cabling
 - Bulkhead feed-throughs
 - Electrical noise
 - Distance from chamber
- How to log the expected results from DUT
 - Latchup
 - SEUs
 - Loss of functionality
- What to do when the part reacts unexpectedly to the radiation source
 - Reset part and record event
 - Cycle power and record event

General Experiment Design & Test Concepts

- Board and DUT power
 - How far away will the power supplies be from the DUT
 - How will the power supplies be monitored
- Communication interface
 - How fast does the interface need to be
 - How much noise will be acceptable on the communication interface
- Part exposure
 - How will the test board be mounted
 - How will the DUT be mounted
 - Will the die require thinning
 - Will high angle testing be performed
 - How high an angle can be reached
- FPGA protection
 - Will the FPGA receive any undesired exposure
 - Will the FPGA need shielding
 - Can the FPGA be powered down during the test

VHDL Block Level Design

Perl VHDL Generation

Example input to RX generator

L%Toggle_LED	%Toggle	%C0%N0% test HW
D%CDC_ICS_clock_divider	%Pulse	%C4%N1% selects the mux
E%CDC_force_data_error	%Clear	%C0%N0%
V%PDTRL_Verbosity	%Pulse	%C4%N1% Verbosity setting

Example: SRAM SEU Testing

Multiple test modes

- Bench test
 - Make sure the part is correct before the test
 - Commercial marching/galloping patterns
- Static test for heavy ion testing
 - Load known pattern
 - Expose DUT to heavy ions
 - Read back the data, scan for changes
- Dynamic test
 - Read/Write
 - Read only = Primary test mode

Measurement procedure

- Write SRAM with bit pattern to ensure groupings of NMOS and PMOS reverse biased junctions
- Read entire SRAM with EDAC disabled, and correct any errors
- Repeat process every 5 to 6 ms
- **Given Service** For each error
 - Log the expected and received data bits in the word
 - Log the word address of the error
 - Log the time stamp (simply the loop counter)
- □ Sample log file

Error	EDAC	0x0	exp	0x000	rec	0x020	addr	0x1702	time	0x7501
Error	EDAC	0x0	exp	0x000	rec	0x004	addr	0x1B59	time	0x752F
Error	EDAC	0x0	exp	0x000	rec	0x008	addr	0x1755	time	0x7550
Error	EDAC	0x0	exp	0x000	rec	0x008	addr	0x1756	time	0x7550
Error	EDAC	0x0	exp	0x000	rec	0x100	addr	0x1ED7	time	0x7564
Error	EDAC	0x0	exp	0x000	rec	0x100	addr	0x1ED8	time	0x7564
Error	EDAC	0x0	exp	0x000	rec	0x100	addr	0x1F57	time	0x7564
Error	EDAC	0x0	exp	0x000	rec	0x100	addr	0x1F58	time	0x7564
Error	EDAC	0x0	exp	0x000	rec	0x200	addr	0x05AE	time	0x75AD
Error	EDAC	0x0	exp	0x000	rec	0x020	addr	0x1657	time	0x75D1

- Parse each error in log file to display layout location
 - XOR expected and received to identify physical 8k block of memory
 - From data state before error, identify reverse biased junctions within the bit cell
 - From address, simply use LVS mapping to highlight nodes in the layout corresponding to these bit cell junctions
- Parse log file to identify and categorize MBUs
 - XOR expected and received to identify physical 8k block of memory
 - From address, compute row and column location of upset bit
 - From data state before error, identify quadrants of bit cell containing reverse biased junctions
 - For errors within same time stamp, locate adjacent bit cells with adjacent reverse biased junctions
 - Determine MBU type (multiple NMOS strike, multiple PMOS strike)
 - Determine MBU multiplicity (double, triple, quadruple)

- **Use LVS mapping to plot reverse biased junctions of each bit error**
 - Dave Mavis and Mike Sibley designed Perl script to extract all cross-sections from the raw data (single PMOS hit, NMOS hit, multiple PMOS/NMOS)

	Sycal A CHE MEN HEET LIANS	at)		8 361.1 dx. 7 24) 6 82	
	HERBERT HERBERT HERBERT HERBERT			ALIONIZAT DELLA VALA SPECTO STATISTICA ALIONIZZA SALANZA SPECTO STATISTICA ALIONIZZA SALANZA	
	FIFFFFFF ZELLELLE YFFFFFFF EFTTERTER	TYPETRAL ANTALYSIS ELEMENS ALEELEENS KYPERKSER ENGENNEST ETHERSER ENGENNEST	TENERITAN TANUNATAN JULIJAJULI, JULIJAJUJ PRESEDEN KENERAJ	RTHUPPERP TWPYTWPY ENGLASSI IIIII RTHUPPERP RESERVER RTHUPPERPERPENT	≯≮
	EPPERATE IGENERATION THTTPENTIC EETTRESSE			virheren yertene Bezenten yertene Ebberten beiteren	
icles	FITTERITE				1122 1123 1123 1223
ף. 5 2	NELLESIS NELLESIS	ETHERSE HEREESE KIEREESE HEREESE KIEREESE HEREESE			IN I
8		TANGTAN PERTURBAN TANGTAN PERTURBAN KECEPERAN PERTURBAN TANGTAN PERTURBAN	AND AND AN AND AN AND AND AN AN AND AN		
	CHARLENIE STATESTA CLUBERIES SA				0444 1779 5.553

90 nm Bulk CMOS SRAM

Vdd = 1.2 V

LET = 59.1 MeV-cm2/mg

Probability of any given MBU arising from multiple particles in same 5.6 ms time stamp: 2-particle MBU : 1.9 x 10-6 3-particle MBU : 3.6 x 10-12 4-particle MBU : 6.8 x 10-18

- **Error cross section dominated by MBUs above 20 MeV-cm2/mg**
- □ Single bit errors account for only 16% of the total errors
- **Double, triple, quadruple PMOS most prevalent**
- **Double, triple, quadruple NMOS less important**

Data Analysis

- **Curve fitting code**
 - Dave Mavis integrated multiple waveform types into curve fit code libraries
- **Example: 90nm SRAM designed by Micro-RDC**
 - Data represents the measured total error cross section
 - Weibull fit can be done, but again with unphysical parameters
 - Lognormal is now from a fit to extracted single bit errors
 - Cross section jump suggests high multiplicity MBUs

In Summary

- Get as much information on the part as possible
 - All functional testing
- Determine most appropriate die package
 - PGA
 - Chip-on-board
- Build test code
 - Re-use as much as possible
- Data analysis
 - Work on test analysis framework before the test
 - Help determine what data must be recorded
- Run experiment

* Special thanks to DTRA for funding much of the test system development on the DSET programs