

Radiation Effects Issues for SOI in Next Generation SRAM-based FPGAs

¹H. J. Barnaby, ¹Bert Vermeire, ²Philippe Adell

¹Arizona State University, Tempe, AZ

²Jet Propulsion Laboratory, Pasadena, CA

Worked by the AFOSR MURI program

Authors would like to thank Kitt Reinhardt and Ron Schrimpf for their contributions to this research.

- SEE Effects in SRAM-based FPGAs
- TID Effects in SOI Technologies

• SEE Effects in SRAM-based FPGAs

TID Effects in SOI Technologies

SRAM-based FPGA Architecture

SEU in SRAM-based FPGAs: CLB slice

after Kastensmidt IEEE NSREC SC 2007

SEE Characterization – Heavy Ion: Static Testing in Virtex4

- Sensitivity in Virtex4 similar to Virtex-II
- Increase at high LET believed to come from MBUs
- Block RAM more susceptible than CLB

after George, et al. IEEE Radiation Effects Data Workshop, 2006

SEE Characterization – Heavy Ion: Static Testing in Virtex4

- Sensitivity in Virtex4 similar to Virtex-II
- Increase at high LET believed to come from MBUs
- Block RAM more susceptible than CLB

Possible Explanation

Transistors in BRAM are thin oxide 90 nm devices

Transistors in CLB are thick oxide 100 nm devices with longer channels

after George, et al. IEEE Radiation Effects Data Workshop, 2006

Technology Scaling in Xilinx FPGAs

after Kastensmidt IEEE NSREC SC 2007

65 nm bulk triple oxide process

- 65-nm XC5VLX50 Virtex[™]-5 FPGA manufactured by Toshiba and UMC
- 35% lower dynamic power achieved with lower supply voltage and capacitance, hard IP
- Same low static power with introduction on 3rd medium thickness oxide

Xilinx WP246 (v1.2) February 1, 2007 http://www.xilinx.com/prs_rls/2006/xil_corp/06128xlnx_chipworks.htm http://www.dsp-fpga.com/articles/holmberg/

65 nm bulk triple oxide process

- 65-nm XC5VLX50 Virtex[™]-5 FPGA manufactured by Toshiba and UMC
- 35% lower dynamic power achieved with lower supply voltage and capacitance, hard IP
- Same low static power with introduction on 3rd medium thickness oxide

SEE susceptibility remains a major concern due to reduced dimensions and supply voltage, increased frequency, and increasing threat of MBUs in bulk technology

Xilinx WP246 (v1.2) February 1, 2007 http://www.xilinx.com/prs_rls/2006/xil_corp/06128xlnx_chipworks.htm http://www.dsp-fpga.com/articles/holmberg/

Bulk vs. SOI: Structure

<u>Bulk</u>

Drain and source regions diffused into a deep body (well or substrate) region

Planar SOI

Back Gate

Drain, source and body formed in thin silicon film between two dielectrics $(G_{ox} \text{ and } B_{ox})$, with or without body tie

Bulk vs. SOI: SRAM SEU response

While the bulk technology is slightly smaller, the significantly higher threshold LET and lower cross-section for the SOI parts indicates superior SEE tolerance in SOI technologies.

after Dodd et al., IEEE TNS Aug. 2007

Advantage of SOI for SEE

SEE Effects in SRAM-based FPGAs

TID Effects in SOI Technologies

Silicon on Insulator (SOI) Transistor

Key Advantages:

- Reduced junction capacitance
- V_T control via dual gate operation

TID Effects in SOI

TID Effects in SOI

after Flament et al., IEEE TNS 2003

- Radiation damage to B_{ox}
 can cause
 - 1. Reduced frontgate V_t caused by gate coupling
 - 2. "Latch effect" due to nonuniform charge build-up and impact ionization
 - 3. GIDL enhanced backchannel leakage

Coupling Effect (Data)

 Fully depleted SOI devices <u>with body contact</u> can exhibit front-gate threshold voltage shift due to electrostatic coupling from back gate

after Paillet et al., IEEE TNS 2005

Coupling Effect (Model)

after Flament et al., IEEE TNS 2003

Charge buildup in the B_{ox}
 shifts the back gate V_t
 and the front gate V_t via
 the coupling coefficient (k)

$$k = \frac{\Delta V_{Tf}}{\Delta V_{Tb}} \approx \frac{t_{ox}}{t_{box}}$$

<u>tradeoff</u>

The thinner the B_{ox}, the less defect buildup but greater coupling

Total Dose Latch

- Without body contact, drain current can "jump" to a high current regime for negative gate voltages
- In some SOI technologies this effect seems to be caused by a single transistor latch effect

after Paillet et al., IEEE TNS 2005 after Schwank et al., IEEE TNS 2003

 Ionizing radiation generates charge in the thick buried oxide

 Charge below body lowers body to source barrier height, inducing electron flow across the body

after Schwank et al., IEEE TNS 2003

after Schwank et al., IEEE TNS 2003

- Charge below body lowers body to source barrier height, inducing electron flow across the body
- Electrons entering high field drain body region generate additional carriers via <u>impact ionization</u>

after Schwank et al., IEEE TNS 2003

- Charge below body lowers body to source barrier height, inducing electron flow across the body
- Electrons entering high field drain body region generate additional carriers via <u>impact ionization</u>
- Back-injected holes induce a self sustaining single transistor latch condition and high current regime

after Schwank et al., IEEE TNS 2000

- For some SOI technologies, "latch effect" is evidenced by sudden transitions in response characteristics
- Effect is most likely observed at high drain biases and devices with high drain doping

Not all SOI technologies exhibit latch type behavior

GIDL Enhanced Back-Channel Leakage

after Schwank et al., IEEE TNS 2000

- High current at high total dose
- No sudden transitions
- Drain current increase with negative gate bias via gate induced drain leakage (GIDL) enhancement

Mechanism for GIDL: band-to-band tunneling (BBT)

GIDL Enhancement Mechanism

Back Gate

 Holes generated by BBT transport to source, forward biasing the sourcebody junction

after Adell et al., IEEE NSREC 2007

GIDL Enhancement Mechanism

after Adell et al., IEEE NSREC 2007

- Holes generated by BBT transport to source, forward biasing the sourcebody junction
- Electrons back-injected into body increase electron concentration along back gate, enhancing back channel leakage

GIDL Enhancement Mechanism: Band Effects

 Prior to radiation exposure and without BBT, back side interface is weakly depleted

GIDL Enhancement Mechanism: Band Effects

 Trapped charge increases backside surface potential, back channel concentration and current

GIDL Enhancement Mechanism: Band Effects

 GIDL current increases electron Fermi level further raising back channel density and current

TID Effects in SOI Technologies: The BAD News

- Charge buildup in the buried oxide continues to be a significant total ionizing dose threat in SOI technologies
- The threats include:
 - Front gate threshold voltage reduction due to electrostatic coupling form the back gate.
 - Drain-to-source leakage caused by back-side inversion enhanced by impact ionization (latch) and/or GIDL
- Traditional radiation-hardening-by-design techniques do not address the effects caused by damage to the B_{ox}

TID Effects in SOI Technologies: The GOOD News

- Commercial manufacturers typically increase doping along the back channel to reduce static power in CMOS circuits. This may mitigate the impact of charge buildup in the B_{ox}
- The use of body ties not only improves SEE effects in SOI parts but there is strong evidence that they also suppress latching and GIDL enhancement
- Some commercial manufacturers reduced body lifetime thereby reducing diffusion lengths, which suppresses bipolar action, a principle mechanism in latching and GIDL enhancement